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ABSTRACT

The present work covers the following topics:

• Non-perturbative methods for strongly correlated
ultracold Fermi gases

• Calculation of self-consistent spectral functions
directly in real frequencies

• Comparison to recent experimental MIT data and
other theoretical approaches

• Possible application to the superfluid phase of the
BCS-BEC crossover

INTRODUCTION

Important properties of a Fermi gas, such as transport
and scattering properties, or the excitation spectrum,
are encoded in its spectral functions.
The computation of spectral functions requires
access to the fermionic and bosonic self-energies at
real frequencies [1, 2, 3]. However, standard numerical
methods are formulated at imaginary frequencies [4].

The problem of analytic continuation
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Figure 1.Wick rotation

Analytic continuation of
numerical data from iωn
(Matsubara frequencies)
to real frequencies ω

poses an ill-conditioned
task with large systematic
uncertainties. In this work,
we evaluate all quantities
directly in real ω.

BCS-BEC CROSSOVER

We consider a spin-balanced Fermi gas, where the
contact interaction of fermions with opposite spin is
modeled by the exchange of bosonic dimers,

S[ψ, ϕ] =
∫ β

0
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∫
d3x

[ ∑
σ=↑,↓

ψ∗
σ(∂τ − ∇2 − µ)ψσ

+ νϕ∗ϕ− h
(
ϕ∗ψ↑ψ↓ − ϕψ∗

↑ψ
∗
↓
) ]

,

where h is the Feshbach coupling between the
fermions and bosons, and ν is the detuning of the
dimer, which is connected to the scattering length a.
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Figure 2. Hubbard-Stratonovich transformation.
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Figure 3. Phase diagram of the BCS-BEC crossover.

SPECTRAL FUNCTIONAL APPROACH

The self-consistent equations for the full propagators
are derived using functional methods and read
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Figure 4. Self-consistent equations for the full spectral functions.

Spectral representation

We use the spectral representation of the propagators

G(iωn,p) =
∫ ∞

−∞
dλ

ρ(λ,p)
−iωn + λ

,

where ρ(λ,p) is the spectral function, which obeys

ρ(ω,p) = 1
π

ImGR(ω,p) ,

where ω is real and GR(ω,p) = G(ω + i0+,p) is the
retarded propagator. In this way, we obtain direct
equations for the spectral functions.

Evaluation at real frequencies

The limit iωn → ω + i0+ is performed analytically and
yields for the imaginary part of the retarded
self-energies

Im ΣR
ψ(ω,p) ∼

∫
λ,q

ρϕ(ω + λ, q) ρψ(λ, q − p)

× [−nB(ω + λ) − nF (λ)] ,

Im ΠR
ϕ (ω, q) ∼

∫
λ,p

ρψ(ω − λ,p) ρψ(λ, q − p)

× [1 − nF (ω − λ) − nF (λ)] ,
with Fermi distribution nF and Bose distribution nB.
The real part is obtained from Kramers-Kronig relation

Re ΣR
ψ(ω,p) = 1

π
P

∫
λ

Im ΣR
ψ(λ,p)

λ− ω
.

RESULTS

Spectral functions

The spectral functions are calculated numerically by
iteration directly in real frequencies.

(a) 1/kFa = −0.5 (b) 1/kFa = 0 (c) 1/kFa = 0.5

Figure 5. Fermionic spectral function ρψ(ω,p) εF for T/TF = 0.56
at different interaction strengths 1/kFa.

(a) 1/kFa = −0.5 (b) 1/kFa = 0 (c) 1/kFa = 0.5

Figure 6. Bosonic dimer spectral function h2ρϕ(ω,p) √
εF/(8π) for

T/TF = 0.56 at different interaction strengths 1/kFa.

From the calculated spectral functions, we can obtain
various observables of ultracold Fermi gases and
compare with other approaches and the experiment.

Radio-frequency (Rf) spectra
The ejection rf spectrum I(ω) is calculated from the
fermionic spectral function ρψ by

I(ω) =
∫

q

ρψ(q2 − ω − µ, q)nF (q2 − ω − µ) .
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Figure 7. Rf spectra, peak positions (Ep = −ωp) and full width at
half maximum Γ for the unitary Fermi gas in comparison to recent
MIT data [5]. The red lines mark the superfluid phase transition.

Momentum distribution and density
The momentum distribution function n(p) and total
density n are calculated from the spectral function by

n(p) =
∫
λ

ρψ(λ,p)nF (λ) , n = 2
∫

p

n(p) .
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Figure 8. (a) Exemplary momentum density distribution n(p) and
(b) density equation of state for the unitary Fermi gas in
comparison to other approaches and experiment.

SUMMARY AND CONCLUSIONS

We calculated self-consistent fermionic and bosonic
spectral functions in the normal phase of a 3D Fermi
gas directly in real-time.
The present approach opens the path towards:

• Transport properties and calculation of spectral
functions in the superfluid phase of ultracold
Fermi gases

• Inclusion of vertex corrections and other classes
of diagrams towards full quantitative precision
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