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Abstract

A single-channel model with Hubbard-Stratonovich field is used to study ultracold Fermi
gases at finite temperature in the normal and superfluid phase. Non-perturbative real-time
Green’s functions with full frequency and momentum dependence are computed iteratively
from Dyson-Schwinger equations. Employing the spectral representation, Matsubara sums
are evaluated and analytically continued to real frequencies. In this way, the full spectral
functions are calculated directly without the need of numerical reconstruction methods.
Finally, these techniques are applied to the unitary Fermi gas and the Fermi polaron.

Zusammenfassung

Ein Einkanal-Modell mit Hubbard-Stratonovich Feld wird verwendet, um ultrakalte Fermi-
gase bei endlicher Temperatur in der normalen und suprafluiden Phase zu untersuchen.
Nicht-perturbative Realzeit-Greensfunktionen mit voller Frequenz- und Impulsabhängig-
keit werden iterativ aus Dyson-Schwinger Gleichungen berechnet. Unter Verwendung der
spektralen Darstellung werden Matsubarasummen ausgewertet und analytisch zu reellen
Frequenzen fortgesetzt. Auf diese Weise werden die vollen Spektralfunktionen direkt be-
rechnet, ohne auf numerische Rekonstruktionsmethoden angewiesen zu sein. Schließlich
werden diese Techniken auf das unitäre Fermigas und das Fermi Polaron angewendet.
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Chapter 1

Introduction

“There is no free lunch.”

– Jan M. Pawlowski

The experimental control of ultracold Fermi gases provides a powerful tool for studying
strongly correlated quantum systems including the BCS-BEC crossover [93] and Fermi
polarons [80]. Understanding these exotic quantum phenomena is essential for the future
development of high-temperature superconductors and quantum computers.

Various non-perturbative approaches, such as Quantum Monte Carlo (QMC) simulations
[67, 89], selfconsistent T-matrix theory [38, 88] or the Luttinger-Ward formalism [41, 43], as
well as Dyson-Schwinger equations (DSEs) [10, 23] and functional Renormalization Group
(fRG) methods [21, 22] have been employed to describe strongly interacting fermions.

A central object of interest in real-time applications is the spectral function [54, 64] which
encodes information about scattering properties and the energy spectrum of the system.
Its determination requires knowledge of correlation functions at real frequencies. How-
ever, the approaches mentioned above are usually formulated in imaginary frequencies
by construction or due to significantly reduced computational costs for the calculation of
thermodynamic observables [33]. This leaves an ill-conditioned numerical problem when
analytically continuing to real frequencies [122].

Numerical reconstruction methods, such as Padé approximations [103] or the Maximum
Entropy Method [42] have been utilized to obtain spectral functions from imaginary-time
data. However, these techniques are plagued by large systematic uncertainties and cannot
guarantee a correct result. Therefore, a direct real-time computation is favorable.

In this Thesis, functional methods are used to calculate spectral functions of ultracold
Fermi gases directly in real frequencies without the need of numerical reconstruction
methods. As a proof of principle, the selfconsistent real-time framework is applied to the
well-known spin-balanced BCS-BEC crossover and the Fermi polaron problem. Previous
results are verified and novel spectral functions are presented.

This work is organized as follows. In Chapter 2, the functional description of Quantum
Field Theories (QFTs) at finite temperature and the spectral representation of propagators
are introduced briefly. In Chapter 3, the theoretical background of ultracold Fermi gases
is presented. In this context, the microscopic model of the theory and first mean-field
considerations are discussed. The main part of this work is summarized in Chapter 4 and
deals with the spectral properties of the BCS-BEC crossover phase diagram, see Fig. 1.1.
In particular, the normal phase above the critical temperature is investigated in detail and
a brief outlook towards the superfluid phase is given. Analytical and numerical results
are discussed and compared to other works. In Chapter 5, the selfconsistent functional
approach is applied to the Fermi polaron problem and compared with previous works.
Finally, in Chapter 6, important results are summarized and a small outlook for future
work is given.
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Figure 1.1.: Phase diagram of the BCS-BEC crossover as a function of temperature T/TF
and coupling strength 1/kFa, where TF and kF is the Fermi temperature and
momentum, respectively, and a is the two-body scattering length. Inspired
by [93] with new results from [43].

Notation and Units

In this Thesis, natural units with h̄ = c = kB = 2m = 1, where m is the fermion mass,
are used. All dimensionful quantities are measured in terms of the density n, or Fermi
momentum kF = (3π2n)1/3. Temperature and energy-like quantities are measured in terms
of Fermi energy TF = εF = k2F . Sometimes, dimensionful constants are reintroduced to
remind the reader of the correct units. Three-vectors are denoted by bold letters. For
the sake of simplicity, we use the same notation for the fields ψσ, with fermion species
σ = (↑, ↓), and ϕ in the classical and effective action.

We use the integral conventions∫
x
=

∫
ddx and

∫
p
=

∫
ddp

(2π)d
. (1.1)



Chapter 2

Functional Methods

In this Chapter, the basic theoretical tools of this work are introduced briefly. Functional
methods, such as the DSEs or the fRG, provide non-perturbative relations for the full
correlation functions of a quantum field theory. For more detailed reviews, see [109]
(DSEs) and [60, 81] (fRG). In the following, we will put emphasis on Dyson-Schwinger
equations and field theories at finite temperature. At the end of this Chapter, we discuss
the spectral representation.

2.1. Dyson-Schwinger equations

Functional methods are based on the path integral formulation of QFT. In general, a
QFT is described by the microscopic action S[ϕ]. Analogously to statistical physics, the
generating functional Z[J ] can be written in Euclidean spacetime as

Z[J ] =
1

N

∫
Dϕ e−S[ϕ]+J ·ϕ with J · ϕ ≡

∫
x
J(x)ϕ(x) , (2.1)

where N is a normalization constant, J(x) is some external source field, and
∫
Dϕ is the

functional integral over all possible field configurations ϕ. The correlation functions are
then obtained by functional derivatives with respect to the source fields,

⟨ϕ(x1) . . . ϕ(xn)⟩ =
1

Z[0]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣∣
J=0

. (2.2)

By the reconstruction theorem, a quantum field theory is completely determined by its
correlation functions [121]. Thus, the path integral contains the full information of the
theory. However, it can be shown that the correlation functions in Eq. (2.2) contain
redundant information and can be split into a connected and disconnected part. In case
of a two-point function [85],

⟨ϕ(x1)ϕ(x2)⟩ = ⟨ϕ(x1)ϕ(x2)⟩c + ⟨ϕ(x1)⟩⟨ϕ(x2)⟩ , (2.3)

where c denotes the connected part of the correlation function in which all external lines
of the Feynman diagrams are connected. This redundancy is removed by the Schwinger
functional W [J ], which generates only connected correlation functions,

W [J ] = lnZ[J ] . (2.4)

In particular, the full propagator is defined by the connected two-point function [85],

G(x1, x2) = ⟨ϕ(x1)ϕ(x2)⟩c =
δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

, (2.5)

and can be obtained by Dyson resummation of amputated one-particle-irreducible (1PI)
contributions. Here, 1PI refers to Feynman diagrams which cannot be divided into two
separate diagrams by cutting one internal line.

3



4 Chapter 2 Functional Methods

Thus, the entire information of the theory is already encoded in the 1PI diagrams. The
generating functional of 1PI correlation functions is the quantum effective action Γ[Φ],
which is defined as the Legendre transform of the Schwinger functional,

Γ[Φ] = sup
J

[
J · Φ−W [J ]

]
= Jsup · Φ−W [Jsup] , (2.6)

where Φ = ⟨ϕ⟩ is now the mean field and Jsup = Jsup[Φ] is the field-dependent current
that minimizes (2.6). From a physical point of view, the effective action Γ is the quantum
analogue of the classical action S, which accounts for all quantum corrections. A non-
perturbative connection between the quantum and classical equations of motion is provided
by the Dyson-Schwinger equation (DSE) [24, 106],

δΓ

δΦ
[Φ] =

δS

δϕ

[
ϕ = Φ+G · δ

δΦ

]
, (2.7)

which follows from the shift independence of the path integral measure. A more detailed
derivation and discussion can be found in [82]. The product in the argument of Eq. (2.7)
is defined by

G · δ

δΦ
=

∫
x
G(x1, x) ·

δ

δΦ(x)
. (2.8)

All higher order 1PI correlation functions are obtained by functional derivatives with
respect to the mean field Φ,

Γ(n)(x1, . . . , xn) =
δnΓ[Φ]

δΦ(x1) . . . δΦ(xn)
. (2.9)

It can be shown that the two-point function is exactly the inverse of the full propagator,

Γ(2)(x1, x2) = G−1(x1, x2) . (2.10)

Note that this is a matrix equation in general. Thus, the inversion must account for all
off-diagonal terms. In the following, we summarize the main extensions when dealing with
multiple fields of different species.

For a general set of fermionic and bosonic fields, one can introduce a superfield Φ which
collects all field indices and species. In case of ultracold Fermi gases, the superfield is given
by Φ = (ψσ, ψ

∗
σ, ϕ, ϕ

∗) with fermion species σ = (↑, ↓). The Dyson-Schwinger equation
takes the form

δΓ

δΦa
[Φ] =

δS

δϕa

[
ϕb = Φb +Gbc ·

δ

δΦc

]
, (2.11)

where a sum over repeated indices is implied. Correlation functions are denoted by

Γ
(n)
Φa1 ...Φan

=
δ

δΦa1
. . .

δ

δΦan
Γ[Φ] . (2.12)

Finally, derivatives of propagators with respect to the mean fields are given by [82]
δ

δΦa
Gbc = −(−1)ab(−1)eeGbd · Γ

(3)
dae ·Gec , (2.13)

where (−1)ab = −1, if a and b are fermionic, and (−1)ab = 1 otherwise. The relation
between propagator and two-point function becomes Gac · Γ(2)

cb = (−1)abδab.

This summarizes all necessary identities to work with functional methods in arbitrary
theories involving fermions and bosons.
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2.2. Finite temperature and density

For a quantum field theory in thermal equilibrium, finite temperature can be introduced
in analogy to classical statistical physics via the so called Matsubara formalism. More
general approaches using e.g. Schwingers closed time path can be found in [63]. Here, we
are mainly interested in the implications for the calculation of Feynman diagrams.

In classical statistical physics, inverse temperature β = 1/T is the prefactor in front of the
Hamiltonian in the partition function and can be viewed as a finite extent along imaginary
times with τ = iβ. As a consequence, the imaginary time direction is compactified to the
interval τ ∈ [0, β] and bosonic fields ϕ have to be periodic with period β, i.e.

ϕ(τ + β,x) = ϕ(τ,x) . (2.14)

The finite temperature path integral can written as

Z =

∫
ϕ(β,x)=ϕ(0,x)

Dϕ e−S[ϕ] with S[ϕ] =

∫ β

0
dτ

∫
d3xL[ϕ] , (2.15)

where L is the imaginary-time (Euclidean) Lagrangian of the theory. The finite extent of
the imaginary time axis and the periodic boundary condition have important consequences
for the Fourier transform of fields,

ϕ(τ,x) = T
∑
ωn

∫
d3p

(2π)3
e−i(τωn−x·p) ϕ(ωn,p) , (2.16)

where ωn = 2πnT with n ∈ Z are the so called Matsubara frequencies. Thus, the zero
component of the momentum becomes discrete and the continuous integral turns into an
infinite Matsubara sum, which can be evaluated using the residue theorem from complex
analysis. To summarize, for the transformation of a QFT in vacuum to a QFT at finite
temperature, one needs to perform the following replacement in appearing momentum
integrals ∫

ddp

(2π)d
→ T

∑
ωn

∫
dd−1p

(2π)d−1
. (2.17)

In case of fermionic fields ψ, the path integral has to fulfill anti-periodic instead of periodic
boundary conditions, i.e. ψ(τ + β,x) = −ψ(τ,x). The Matsubara frequencies are given
by ωn = (2n+ 1)πT with n ∈ Z.

The inclusion of a finite chemical potential µ leads to a finite density and follows also from
the path integral in analogy to the grand canonical ensemble. Recall that the particle
number is related to the chemical potential via derivative of the grand potential with
respect to µ. In order to include a chemical potential in the path integral, we add the
respective term to the Euclidean action. In frequency space, this amounts to the following
shift into the complex plane

ωn → ωn − iµ . (2.18)

Note that finite temperatures or densities break Lorentz and Galilei invariance in general,
since they single out a specific frame of reference.
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2.3. Spectral representation

The spectral representation of the propagator plays a central role in the spectral functional
approach. Usually, computations are performed in imaginary-time on discrete Matsubara
frequencies ωn which results in an ill-defined problem when analytically continuing to the
real frequency axis, see Fig. 2.1. In the present work, we assume the following Källén-
Lehmann representation of the full propagators [2, 30, 42]

G(ωn,p) =

∫ ∞

−∞
dλ

ρ(λ,p)

−iωn + λ
, (2.19)

where ρ is the spectral function. In this way, the propagator is a symbolic expression in
ωn which can be evaluated at arbitrary frequencies in the complex plane. Physically, the
spectral function acts as a linear response function of the propagator, encoding the energy
spectrum of the theory, see also Fig. 2.1. Eq. (2.19) leads to the following inverse relation
between the spectral function and the retarded propagator,

ρ(ω,p) =
1

π
ImGR(ω,p) , (2.20)

where GR(ω,p) = G(−i(ω + i0+),p) and ω is now a real frequency. The existence of a
spectral representation restricts all non-analyticities of the propagator to lie on the real
frequency axis. For a more detailed discussion on the analytic properties, see [84, 95, 122].
The fermionic spectral function satisfies the sum rule [35]∫ ∞

−∞
dλ ρψ(λ,p) = 1 . (2.21)

However, while fermionic spectral functions satisfy ρψ(ω,p) ≥ 0, bosonic spectral functions
satisfy sgn(ω)ρϕ(ω,p) ≥ 0 [30]. Note that the negative sign of the boson spectral function
for negative frequencies guarantees the positivity of the boson momentum distribution
function. Moreover, the boson spectral function has not to be normalized.

ω

iωn

?

(a)

ω

ρ(ω)

2Γ
scattering
continuum

quasiparticle
peak

(b)

Figure 2.1.: (a) The problem of analytic continuation from discrete imaginary Matsubara
frequencies ωn to real frequencies ω. (b) Sample spectral function ρ(ω,p = 0)
featuring a broadened mass peak and a scattering continuum.



Chapter 3

Ultracold Fermi Gases

In this Chapter, a short introduction to the physics of ultracold Fermi gases is given. First,
the concept of Feshbach resonances, which allow to tune the interaction strength inside
the gas, and their connection to scattering physics is introduced. Then, the microscopic
model and first mean-field descriptions are discussed. For more details, see [9, 93, 125].

3.1. Feshbach resonances

In ultracold fermionic gases, the interaction strength can be tuned by means of Feshbach
resonances. In order to understand this statement, we have to recover the basic notion
of two-body scattering physics at low energies. The relevant parameter, which can be
extracted from experiments, is the scattering length a. For sufficiently short range interac-
tion potentials, the scattering length describes the scattering process completely. At low
temperatures, the s-wave scattering amplitude is given by [125]

f(k) =
1

−1/a− ik +O(k2)
, (3.1)

where k is the center of mass momentum. In real gases, the effective range of interac-
tions is essentially the van der Waals length lvdw which is much smaller then the average
interparticle spacing n−1/3 at density n. At the same time, the temperature has to be
small enough such that the thermal wavelength λT is larger than the interparticle spacing.
Ultracold gases are thus characterized by the following hierarchy of length scales [125]

lvdw ≪ n−1/3 ≪ λT . (3.2)

The difference between weak and strong interactions is characterized by the relative mag-
nitude of the scattering length with respect to the interparticle distance. Using Feshbach
resonances, the scattering length can be tuned to values much larger then the typical in-
terparticle distance while keeping the effective range of order lvdw. In this way, strongly
interacting Fermi gases with n−1/3a≫ 1 can be realized.

In general, Feshbach resonances can be described with the two-channel model, see Fig. 3.1.
When a bound state in a closed channel is coupled resonantly with the scattering contin-
uum of an open channel, the scattering cross section can be enhanced. Here, one uses the
fact that the atoms can virtually change their spin configuration during the collision. In
the different spin configuration, they interact with a different scattering potential which
can be tuned with a magnetic field B according to the Zeeman splitting ∆E = ∆µB,
where ∆µ is the difference in magnetic moment between closed and open channel. The
energetic distance of the bound state in the closed channel to the scattering threshold
E = 0 is called detuning [27]

ν(B) = ∆µ(B −B0) , (3.3)

where B0 is the resonance position of the Feshbach resonance, see Fig. 3.1.

7



8 Chapter 3 Ultracold Fermi Gases

r

V (r)

0

Closed Channel

Open Channel

∆µB
ν(B)

(a)

B

a(B)

0
abg

∆B

B0

(b)

Figure 3.1.: (a) Two-channel Feshbach resonance model as described in the main text. (b)
Scattering length a as a function of magnetic field B, see Eq. (3.4).

On a phenomenological level, the scattering length can be written as

a(B) = abg

(
1− ∆B

B −B0

)
, (3.4)

where abg is a background scattering length without coupling to the closed channel and
∆B is the width of the resonance. For more discussions about the width ∆B, as well
as broad and narrow Feshbach resonances, see e.g. [18]. Note that the resonance occurs
when the detuning vanishes ν(B) → 0. In this case, we are in the so called strongly
correlated, unitary regime. To summarize, the following three regimes can be identified
in the three-dimensional BCS-BEC crossover, as function of the dimensionless interaction
strength (kFa)

−1,

(kFa)
−1 → −∞ : weakly interacting fermionic gas ,

|(kFa)−1| ≤ 1 : strongly interacting regime ,
(kFa)

−1 → ∞ : weakly interacting bosonic gas .

In the following, we are interested in the strongly correlated case close to a broad Feshbach
resonance which is described sufficiently by the single-channel model introduced below.

3.2. Single-channel model

We consider a non-relativistic two-component Fermi gas with contact interaction described
by the Euclidean action (single-channel model) [125]

S[ψ] =

∫ β

0
dτ

∫
d3x

[ ∑
σ=↑,↓

ψ∗
σ(∂τ −∇2 − µσ)ψσ + λψ∗

↑ψ
∗
↓ψ↓ψ↑

]
, (3.5)

where λ is the coupling constant, which is connected to the s-wave scattering length
a, and µσ is the chemical potential of fermion species σ = (↑, ↓). The fermionic fields
ψσ(τ,x) are Grassmann valued and depend on the Euclidean time τ , which is restricted
to the circumference β = 1/T . Notation and units are as described at the end of the
introduction.
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S[ψ, φ] =
−1

+
−1

+
−1

+ +

Figure 3.2.: Diagrammatic representation of the single-channel model in Eq. (3.6). The
two classical fermion propagators are denoted by the blue and red full line,
and the classical boson propagator is denoted by the green dashed line.

Motivated by the Feshbach resonance model, a partially bosonised spin-balanced system
(µ↑ = µ↓ = µ) is used, where the contact interaction of fermions is mediated by the
exchange of bosonic dimers. Mathematically, this bosonic field enters the microscopic
action (3.5) via a Hubbard–Stratonovich transformation and the new action is given by

S[ψ, ϕ] =

∫ β

0
dτ

∫
d3x

[ ∑
σ=↑,↓

ψ∗
σ(∂τ −∇2 − µ)ψσ + νϕ∗ϕ− h(ϕ∗ψ↑ψ↓ − ϕψ∗

↑ψ
∗
↓)
]
, (3.6)

where h is the Feshbach coupling between the fermions and bosons, and ν is the detuning of
the dimer. This action is also called single-channel model and is depicted diagrammatically
in Fig. 3.2. Note that the four-fermion interaction has dropped out, which requires that
λ = −h2/ν [31]. Indeed, performing the Gaussian functional integral over the bosonic
fields recovers the fermionic action (3.5). This is diagrammatically shown in Fig. 3.3.
While the four-fermion coupling λ gets strongly affected by fluctuations, the Feshbach
coupling h which is connected to the width of the resonance can be approximated by its
classical value. As a consequence, the bare detuning ν needs appropriate renormalization,
which is described in detail in Appendix A.4. Here, we just state that the bare detuning
ν is related to the two-body scattering length a via [19, 43, 34]

ν = − h2

8πa
+

∫
d3p

(2π)3
1

2p2
. (3.7)

By tuning the dimensionless interaction strength (kFa)
−1, the system can be driven from

a BCS-type superfluid to a Bose-Einstein condensed state, allowing for the exploration of
the BCS-BEC crossover [93]. On the BCS side of the crossover, (kFa)−1 < 0, the bosonic
dimer ϕ describes weakly bound Cooper pairs. On the BEC side, (kFa)−1 > 0, ϕ describes
tightly bound bosonic molecules. Bose-Einstein condensation of the bosonic pairs, i.e. a
non-vanishing expectation value of ϕ, leads to superfluidity in the system [99]. In the
following, we will consider the BCS-BEC crossover with a special focus on the strongly
correlated, unitary regime at (kFa)

−1 = 0.

Figure 3.3.: Diagrammatic representation of the Hubbard-Stratonovich transformation.
The four-fermion interaction is modeled by the exchange of a bosonic dimer.
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3.3. Mean-field description

Before diving into the fully non-perturbative description of the BCS-BEC crossover, it is
worth investigating the theory on a mean-field level to get some physical intuition and
to introduce the basic notation. In this context, the Nambu-Gorkov formalism [9] comes
in handy, which is also used in other theories of superconductivity [108]. This will also
provide us with the mean-field propagators which will be used as initial guess for further
computations. Let us define the Nambu spinors in momentum space, with Q = (ωn, q),

Ψ†(Q) =
(
ψ∗
↑(Q), ψ↓(−Q)

)
, Ψ(Q) =

(
ψ↑(Q)
ψ∗
↓(−Q)

)
. (3.8)

With these spinors, the fermionic part of the action (3.6) can be written as

SF [Ψ] =

∫ β

0
dτ

∫
d3x Ψ†

(
∂τ −∇2 − µ hϕ

hϕ∗ ∂τ +∇2 + µ

)
Ψ . (3.9)

From this expression, the inverse classical propagator S(2)

ΨΨ†(Q,Q
′) with constant back-

ground field ∆ = hϕ can be derived [22]

S
(2)

ΨΨ†(Q,Q
′) =

δ2SF
δΨ(Q)δΨ†(Q′)

= δ(Q−Q′)

(
−iωn + εq − µ ∆

∆∗ −iωn − εq + µ

)
, (3.10)

where we defined the classical momentum dispersion εq = q2. The parameter ∆ is often
called the gap parameter. A more detailed derivation of the propagators can be found
in Appendix A.1. Note that a propagator comes always with an energy-momentum con-
serving delta function G(Q,Q′) = δ(Q−Q′)G(Q). In the following, we will call G(Q) the
propagator. From Eq. (3.10), the classical fermion propagator, or BCS propagator, can
be obtained via matrix inversion [116]

G
(0)

ΨΨ†(Q) =
1

ω2
n + ξ2q +∆2

(
iωn + ξq ∆

∆∗ iωn − ξq

)
, (3.11)

where ξq = εq − µ. The components of the BCS propagator can be rewritten in terms of
the Bogoliubov coefficients uq, vq and a new BCS dispersion relation Eq =

√
ξ2q +∆2,

u2q =
1

2

[
1 +

ξq
Eq

]
, v2q =

1

2

[
1− ξq

Eq

]
, uqvq =

∆

2Eq
. (3.12)

We call the diagonal entries of the propagator (↑↑, ↓↓) the normal components,

G
(0)
↑↑ (Q) =

iωn + ξq
ω2
n + E2

q

=
u2q

−iωn + Eq
+

v2q
−iωn − Eq

= −G(0)
↓↓ (−Q) , (3.13)

and the off-diagonal entries (↑↓, ↓↑) the anomalous components,

G
(0)
↑↓ (Q) =

∆

ω2
n + E2

q

= uqvq

[
1

−iωn + Eq
− 1

−iωn − Eq

]
= G

(0)
↓↑ (Q) . (3.14)

In the last equation, we chose ∆ to be real without loss of generality [30].
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The physical meaning of these components is very intuitive. In the normal phase where
there is no condensate, i.e. ∆ = 0, the off-diagonal components are zero and we are left
with a standard fermionic propagator with classical dispersion relation. In the symmetry-
broken phase, or superfluid phase, the gap parameter is non-zero (∆ ̸= 0) and we obtain
a modified BCS dispersion relation, see Fig. 3.4. Thus, the anomalous components are
directly related to the presence of a condensate field [30].

From Eq. (3.13) and (3.14), the general initial spectral functions can be derived,

ρ
(0)
↑↑ (λ, q) = u2q δ(λ− Eq) + v2q δ(λ+ Eq) , (3.15)

ρ
(0)
↑↓ (λ, q) = uqvq

[
δ(λ− Eq)− δ(λ+ Eq)

]
. (3.16)

In the normal phase (∆ = 0), the spectral functions simplify to

ρ
(0)
↑↑ (λ, q) = δ(λ− q2 + µ) , (3.17)

ρ
(0)
↑↓ (λ, q) = 0 . (3.18)

Since the diagonal components, as well as the off-diagonal components, are related to
each other for the spin- and mass-balanced Fermi gas, the system is completely described
by one normal and one anomalous spectral function. Note that the anomalous spectral
function satisfies the sum rules [86]∫ ∞

−∞
dλ ρ↑↓(λ,p) = 0 , (3.19)∫ ∞

−∞
dλλ ρ↑↓(λ,p) = ∆ . (3.20)

In the single-channel model, the bosonic dimer acts as an interaction exchange particle and
has no classical dispersion relation. Thus, it has no clear interpretation as a probability
distribution and is not normalized. In this way, it carries also no contribution to the total
density. For a more detailed discussion of dynamic bosons within the two-channel model,
see [18, 20, 102].

p/kF

ω/εF

µ

(a)

p/kF

ω/εF

∆

(b)

Figure 3.4.: (a) Classical dispersion relation in the normal phase vs. (b) BCS dispersion
relation in the superfluid phase.





Chapter 4

BCS-BEC Crossover

In this Chapter, we investigate the spectral properties of the BCS-BEC crossover and
present the main results of this work. A fully non-perturbative functional method [45]
is applied to obtain spectral functions directly in real-time. We start with a simplified
discussion of the normal phase and then present the general treatment in the superfluid
phase. Numerical results of this work are compared to other approaches and existing
results from the literature. In the end, the numerical framework is applied to describe
recent experimental data from MIT [71].

4.1. Normal phase

Let us start with a discussion of the normal phase of the BCS-BEC crossover and introduce
the basic concepts of the selfconsistent framework. As mentioned before, we are dealing
with a balanced system in which the propagators of the ↑ and ↓ species are the same
and we are left with only one fermion propagator Gψψ∗ = Gψ↑ψ

∗
↑
= Gψ↓ψ

∗
↓
. Since we are

restricting ourselves to the normal phase, the gap parameter ∆ is zero and the matrix
propagator is diagonal. The Dyson-Schwinger equations for this system can be derived
from the master DSE (2.11) by using the single-channel action in Eq. (3.6). Schematically,
the fermion DSE reads

Γ
(2)
ψψ∗ = S

(2)
ψψ∗ + S

(3)
ψ∗
↓ψ

∗
↑ϕ

·Gϕϕ∗ · Γ
(3)
ψ↑ψ↓ϕ∗

·Gψψ∗ , (4.1)

where Gϕϕ∗ and Gψψ∗ are the full boson and fermion propagators, and S(3) and Γ(3) are
the classical and full vertices, respectively. The boson DSE reads analogously

Γ
(2)
ϕϕ∗ = S

(2)
ϕϕ∗ − S

(3)
ψ↓ψ↑ϕ∗

·Gψψ∗ · Γ(3)
ψ∗
↑ψ

∗
↓ϕ

·Gψψ∗ . (4.2)

Note the different sign from the fermionic loop. For a detailed derivation of the above
equations, we refer the reader to Appendix A.2. The classical inverse propagators can be
obtained from the microscopic action (3.6), see Appendix A.1,

S
(2)
ψψ∗ = −iωn + p2 − µ , S

(2)
ϕϕ∗ = ν . (4.3)

The coupled Dyson-Schwinger equations for the fermion and boson propagator are de-
picted diagrammatically in Fig. 4.1. In this way, quantum fluctuations are included in the
calculation and the classical propagators are related to the full ones. The full vertex Γ(3)

could be included in principle, as has been done in [45], but for this work it is approximated
by the classical vertex, i.e. Γ(3) = S(3). Referring to Section 3.2, we note that this approx-
imation corresponds to a theory without background interaction, i.e., there is no quantum
correction to the classical vertex without a background four-fermion coupling [18]. Thus,
this truncation is equivalent to the well-known T-matrix approach from the literature [43,
38]. However, the functional method can be generalized straightforwardly by taking the
full three-point function Γ(3) into account.

13
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+

−1−1

=

−

−1−1

=

Figure 4.1.: Coupled Dyson-Schwinger equations for the fermion and boson propagator.
The red, blue and green blobs denote the full fermion and boson propagators.
The black dot denotes the classical vertex S(3) and the gray blob denotes the
full vertex Γ(3).

Inserting the classical propagators and the renormalized detuning from Eq. (3.7) into the
Dyson-Schwinger equations above yields the central equations of this work. Renaming the
fermion propagator Gψ = Gψψ∗ and using G−1

ψ = Γ
(2)
ψψ∗ and similarly for the boson gives

G−1
ψ (ωn,p) = −iωn + p2 − µ+Σψ(ωn,p) ,

G−1
ϕ (ωn,p) = − h2

8πa
−Πϕ(ωn,p) , (4.4)

where we defined the fermionic and bosonic self-energy, Σψ and Πϕ, respectively. Using
the classical Yukawa coupling h for the vertices, the self-energies are given by

Σψ(ωn,p) = h2
∫

d3q

(2π)3
T
∑
Ωm

Gϕ(Ωm, q)Gψ(Ωm − ωn, q − p) ,

Πϕ(ωn,p) = h2
∫

d3q

(2π)3

T∑
Ωm

Gψ(Ωm, q)Gψ(ωn − Ωm,p− q)− 1

2q2

 , (4.5)

where the last term was absorbed from the renormalized detuning to regularize the integral.
Note that in the fermionic self-energy Σψ, the sum is over bosonic Matsubara frequencies
Ωm = 2mπT , whereas in the bosonic self-energy Πϕ, the sum is over fermionic Matsubara
frequencies Ωm = (2m+ 1)πT .

Using the spectral representation in Eq. (2.19) for the fermion and boson propagator, the
self-energies can be written in terms of spectral loop integrals,

Σψ(ωn,p) = h2
∫
q,λ1,λ2

ρϕ(λ1, q)ρψ(λ2, q − p) Iψ(ωn, λ1, λ2) ,

Πϕ(ωn,p) = h2
∫
q

[∫
λ1,λ2

ρψ(λ1, q)ρψ(λ2,p− q) Iϕ(ωn, λ1, λ2)−
1

2q2

]
. (4.6)

We use the notation
∫
q =

∫
d3q/(2π)3 and

∫
λ =

∫∞
−∞ dλ. The Matsubara summation in

Iψ(ωn, λ1, λ2) and Iϕ(ωn, λ1, λ2) can be carried out analytically, leaving us with symbolic
expressions in terms of the argument ωn for both self-energies, which can be evaluated at
any complex frequency. The explicit calculation of the Matsubara sums can be found in
Appendix A.3 and a more detailed discussion in [90].
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The resulting expressions for Iψ(ωn, λ1, λ2) and Iϕ(ωn, λ1, λ2) are given by

Iψ(ωn, λ1, λ2) = T
∑
Ωm

1

iΩm − λ1

1

i(Ωm − ωn)− λ2
=

−nB(λ1)− nF (λ2)

−iωn + λ1 − λ2
,

Iϕ(ωn, λ1, λ2) = T
∑
Ωm

1

iΩm − λ1

1

i(ωn − Ωm)− λ2
=

1− nF (λ1)− nF (λ2)

−iωn + λ1 + λ2
, (4.7)

where nF (λ) = 1/(eλ/T + 1) is the Fermi distribution function and nB(λ) = 1/(eλ/T − 1)
is the Bose-Einstein distribution function. For T → 0, the results simplify according to
nB(λ) → −θ(−λ) and nF (λ) → θ(−λ), where θ(λ) is the Heaviside step function.

Evaluation at real frequencies

The regularized and coupled DSEs in (4.4) can be evaluated at arbitrary complex frequen-
cies. For the extraction of the spectral functions with (2.20), we choose ωn = −i(ω + iε)
with ω real and ε→ 0+. The limit ε→ 0+ is performed analytically using the relation

1

x± i0+
= P

1

x
∓ iπδ(x) , (4.8)

where P denotes the principal value. The delta function eliminates one spectral integration
which allows us to write the imaginary part of the retarded self-energies as

ImΣRψ (ω,p) = πh2
∫
q,λ

ρϕ(ω + λ, q)ρψ(λ, q − p)
[
−nB(ω + λ)− nF (λ)

]
,

ImΠRϕ (ω,p) = πh2
∫
q,λ

ρψ(ω − λ, q)ρψ(λ,p− q)
[
1− nF (ω − λ)− nF (λ)

]
. (4.9)

Note that the pole of nB(ω+ λ) in the fermion self-energy is exactly canceled by the zero
crossing of the boson spectral function ρϕ, see Section 2.3.

The real part of the retarded self-energies is obtained very efficiently from the imaginary
part via the Kramers-Kronig relation [2, 117],

ReΣR(ω,p) = 1

π
P

∫
λ

ImΣR(λ,p)

λ− ω
, (4.10)

avoiding the 4-dimensional integrals in (4.6) and performing a controlled 1-dimensional
principal value integral instead. The fermionic self-energy decays for large values of the
argument λ, see Appendix A.6. Thus, the Kramers-Kronig relation can be used without
further manipulations to compute the real part. As we will see later, the bosonic self-
energy grows indefinitely for large values of λ and requires special subtraction schemes to
treat the divergent parts analytically. This has to do with the counterterm in (4.6) and is
discussed in detail in Appendix A.5.

Having obtained the real and imaginary part of the retarded self-energies, the spectral
functions can be calculated with Eq. (2.20). More explicitly, for the fermions,

ρψ(ω,p) =
1

π
ImGRψ (ω,p) =

−ImΣRψ (ω,p)/π[
ω − p2 + µ− ReΣRψ (ω,p)

]2
+
[
ImΣRψ (ω,p)

]2 . (4.11)

This updated spectral function can be used in the next iteration to solve the coupled DSEs
in Fig. 4.1 selfconsistently until convergence is reached.
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First iteration of the boson self-energy

The iterative procedure is initialized with the first iteration of the boson self-energy, for
which analytic results at finite and zero temperature can be derived. Inserting the classical
fermion spectral function ρψ(λ,p) = δ(λ−p2+µ) in Eq. (4.6) and performing the spectral
integrals, we obtain the well-known expression for the non-selfconsistent retarded boson
self-energy

ΠRϕ (ω,p) = h2
∫
q

[
1− nF (εq − µ)− nF (εp−q − µ)

−ω + εq + εp−q − 2µ− i0+
− 1

2q2

]
, (4.12)

where εp = p2 is the classical momentum dispersion. At finite temperature, the imaginary
part can be calculated analytically. The full calculation of the boson self-energy with
general mass and spin-imbalance can be found in Appendix A.5. Here, we just state the
result for the balanced case with equal mass and chemical potential.

For y ≥ 0, the imaginary part at finite temperature is given by

ImΠRϕ (ω,p) =
h2

8π

√y −

2
√
y nF (y − µ) , p = 0

T
p ln

(
nF (µ−q2+)

nF (µ−q2−)

)
, p ̸= 0

 , (4.13)

where we have defined y = ω/2−p2/4+µ and q± =
√
y±p/2, with p = |p|. For y < 0, the

imaginary part vanishes identically. The real part at finite temperature cannot be solved
analytically and has to be calculated numerically. However, at zero temperature, analytic
expressions for both parts can be found. At T = 0, the imaginary part is

ImΠRϕ (ω,p) =
h2

8π

√y −
2

√
y θ (µ− y) , p = 0

θ(µ−q2−)
p

[
µ− q2− −

(
µ− q2+

)
θ
(
µ− q2+

)]
, p ̸= 0

 . (4.14)

Note that the second term only contributes for µ > 0. The real part at vanishing spatial
momentum, see Appendix A.5, is given for µ > 0 by

ReΠRϕ (ω,0) =
h2

2π2

√µ−
√
|y|


arctanh

(√
µ
y

)
, y ≥ 0

arctan
(√

µ
|y|

)
− π

4 , y < 0

 . (4.15)

For general non-zero spatial momentum, the expression is slightly more complicated

ReΠRϕ (ω,p) =
h2

4π2

√µ− y − µ+ p2/4

2p
log
(
y − q̃2+
y − q̃2−

)

−
√
|y|


arctanh

(
q̃−√
y

)
+ arctanh

(
q̃+√
y

)
, y ≥ 0

arctan
(

q̃−√
|y|

)
+ arctan

(
q̃+√
|y|

)
− π

2 , y < 0

 , (4.16)

with q̃± =
√
µ± p/2. For µ < 0, the real part is just given by ReΠRϕ (ω,p) = h2

√
−y/(8π),

where y < 0. These results also agree with the formulas given in [90].
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4.2. Superfluid phase

In this Section, we consider the general case of a non-vanishing condensate expectation
value (∆ ̸= 0). Now, we also have to account for the off-diagonal, also called anomalous,
contributions. The general structure of the new DSEs is given by(

Γ
(2)
11 Γ

(2)
12

Γ
(2)
21 Γ

(2)
22

)
=

(
S
(2)
11 S

(2)
12

S
(2)
21 S

(2)
22

)
−

(
Σ11 Σ12

Σ21 Σ22

)
, (4.17)

and the components of the propagator are determined with Eq. (2.10) by a matrix inverse(
G11 G12

G21 G22

)
=

1

Γ
(2)
11 Γ

(2)
22 − Γ

(2)
12 Γ

(2)
21

(
Γ
(2)
22 −Γ

(2)
12

−Γ
(2)
21 Γ

(2)
11

)
. (4.18)

This means that the fermion and boson propagators are now matrix objects with normal
and anomalous components. For the balanced case, we choose the notation

GΨΨ† =

(
G↑↑ G↑↓
G↓↑ G↓↓

)
, GΦΦ† =

(
Gϕϕ∗ Gϕϕ
Gϕ∗ϕ∗ Gϕ∗ϕ

)
. (4.19)

Owing to the symmetry identities introduced in Section 3.3, the only independent com-
ponents for the balanced Fermi gas are G↑↑, G↑↓, Gϕϕ∗ and Gϕϕ. Thus, each propagator
is described completely by one normal and one anomalous component. Consequently, we
now have four, instead of two, coupled equations, i.e., the normal components also depend
on the anomalous components. For more details, also on the more general spin-imbalanced
case, see [33]. The additional DSEs for the anomalous components can be derived by the
same means from the master DSE in Eq. (2.11), see Appendix A.2. Using the new notation,
the fermion DSEs in the symmetry-broken phase are given by1

Γ
(2)
↑↑ (P ) = S

(2)
↑↑ (P ) + h2

∫
Q
Gϕϕ∗(Q) ·G↑↑(Q− P ) ,

Γ
(2)
↑↓ (P ) = S

(2)
↑↓ (P )− h2

∫
Q
Gϕϕ(Q) ·G↑↓(Q− P ) , (4.20)

where P = (ωn,p) and
∫
Q = T

∑
Ωn

∫
q. Analogously, the boson DSEs are given by

Γ
(2)
ϕϕ∗(P ) = S

(2)
ϕϕ∗(P )− h2

∫
Q
G↑↑(Q) ·G↑↑(P −Q) ,

Γ
(2)
ϕϕ(P ) = S

(2)
ϕϕ (P ) + h2

∫
Q
G↑↓(Q) ·G↑↓(P −Q) . (4.21)

The classical inverse fermion and boson Green’s functions are given by

S
(2)

ΨΨ† =

(
−iωn + ξp ∆

∆ −iωn − ξp

)
, S

(2)

ΦΦ† =

(
ν 0
0 ν

)
. (4.22)

For more details on the symmetries between the components and the evaluation at real
frequencies, see Appendix A.2 and [86].

1Note the different sign as compared to [42] for the anomalous component, see also [3, 33, 86].
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4.3. Results

In this Section, we discuss the numerical results obtained in this work. In the first part, we
focus on the novel results for the non-perturbative spectral functions calculated directly
in real frequencies and compare with other approaches. In the following parts, we bench-
mark our method against existing results for the unitary Fermi gas and compare with
experimental data from MIT [71].

Spectral functions

We start with a discussion of the results for the spin-balanced Fermi gas in the normal
phase. For details on the numerical implementation, we refer the reader to Appendix B.

Physical properties and reconstructions of the fermion spectral function have been dis-
cussed extensively in the literature [42, 78, 94]. However, fully selfconsistent results
obtained directly in real-time are limited. Simultaneously with the spectral approach
developed in this work, there have been other unpublished works by Johannes Lang and
Tilman Enss based on the Keldysh formalism. In particular, the code of Johannes Lang
is based on a fast Fourier transform to real-times that renders the convolutions in the self-
energy expressions to simple matrix multiplications [62]. It was originally developed for
general dynamic systems out of equilibrium and will be used to compare with our results
in thermal equilibrium. In this part, we also show the bosonic dimer spectral function
which has not received much attention in the past.

Let us begin with the final results for the full momentum-dependent spectral functions
at different interaction strengths. Fig. 4.2 shows results for the fermion spectral function
ρψ and Fig. 4.3 shows the corresponding bosonic dimer spectral functions ρϕ. In our unit
system introduced in Chapter 1, the frequency ω and momentum p are measured in εF
and kF , respectively, and the spectral functions have units of ε−1

F . We state all results in
dimensionless form. Note that the bosonic dimer spectral function is not normalized and
depends on the choice of the Feshbach coupling h. In this way, it can be regarded as a
pure interaction exchange boson and not a real particle. To eliminate the h-dependence,
we multiply ρϕ by h2/(8π) since h2Gϕ/(8π) is the relevant quantity which is related to the
scattering amplitude, see Appendix A.4.

(a) (kF a)
−1 = −0.5 (b) (kF a)

−1 = 0 (c) (kF a)
−1 = 0.5

Figure 4.2.: Results for the normalized fermionic spectral function ρψ εF for βµ = 0.13146
at different interaction strengths (kFa)−1 which correspond to (a) BCS regime
(b) unitarity (c) BEC regime.
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(a) (kF a)
−1 = −0.5 (b) (kF a)

−1 = 0 (c) (kF a)
−1 = 0.5

Figure 4.3.: Results for the normalized bosonic dimer spectral function h2ρϕ εF /(8π) for
βµ = 0.13146 at different interaction strengths (kFa)

−1 which correspond to
(a) BCS regime (b) unitarity (c) BEC regime.

The results for the bosonic dimer spectral function encode important information about
the physics of the ultracold Fermi gas. First, we see a very broad peak structure for
attractive interactions in the BCS regime, and a very sharp peak structure for repulsive
interactions in BEC regime. This refers to the physical interpretation of condensed bosons
on the BEC side. On this side of the BCS-BEC phase diagram, at 1/(kFa) = 0.5, the boson
spectral function is very sharp and the system can be described as normal Bose liquid. On
the BCS side of the crossover, at 1/(kFa) = −0.5, the fermion spectral function is sharper
and the system is described by a normal Fermi liquid, see Fig. 1.1.

Fig. 4.4 shows the convergence behavior of the fermionic spectral function at unitarity
for different temperatures. One can see that the spectral function at higher temperature
convergences much faster than the spectral function at lower temperature. At T = 1.0TF ,
convergence is reached already after 6-7 iterations while the spectral function at T = 0.3TF
still varies considerably. Note the slow alternating convergence of the peak. This has to
do with the fact that the bosonic spectral function gets very sharp and sensitive at lower
temperatures close to the critical point, which will be discussed later in this Section.
Without special treatment, like fixing the position of the boson peak or updating the
spectral functions only partially [33], it takes around 20 iterations to fully converge at
T = 0.3TF .

The fully converged fermion spectral functions obtained in this work are compared to the
Keldysh results of Johannes Lang [62] in Fig. 4.5. We find remarkable agreement between
the two real-time approaches. However, a small residual shift of the peak positions is
noticeable, which may result from remaining numerical issues. Nevertheless, a reconstruc-
tion from imaginary-time calculations by J. Lang via the Maximum Entropy Method [51]
shows that the resulting spectral functions depend highly on the primer and may vary
significantly. Without any prior information, the reconstructions differ notably from the
real-time results. On the contrary, with real-time spectral functions as primer, the recon-
structions yield the same results confirming the real-time calculations [62]. This shows
the importance of computations directly in real frequencies.

Close to the critical temperature, the convergence behavior gets very problematic. Fig. 4.6
and 4.7 show the fermion and boson spectral function for two consecutive iterations at
βµ = 2. Similar to the oscillations in Fig. 4.4 at T = 0.3TF , we see the spectral functions
alternating between two shapes, however, much more extreme. This situation can become
very unstable and even increase in amplitude such that convergence is never reached.
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(a) T = 0.3TF
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(b) T = 1.0TF

Figure 4.4.: Convergence of the fermionic spectral function at different temperatures.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
/ F

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(
,0

) 
F

Keldysh
Spectral (This work)

(a) T = 0.3TF
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(b) T = 1.0TF

Figure 4.5.: Comparison of the fully converged fermionic spectral functions with a different
real-time approach [62], see explanations in the main text.

The reason for this is that the peak of the bosonic spectral function gets very sharp and
sensitive at ω = 0 close to the critical temperature. Small numerical uncertainties in the
fermion spectral function can lead to shifts of the bosonic peak below ω = 0, as can be
seen in Fig. 4.7. However, this situation is unphysical and numerically unstable, and leads
to precondensed fermion spectral functions, see Fig. 4.6. In these cases, it is advisable to
fix the boson peak at a certain value and then convert to the right interaction strength
after convergence [62]. Another approach is to update the fermion spectral functions only
partially to improve the convergence behavior [33].

As a consequence, the boson spectral function reveals crucial information about the critical
region of the phase transition to the superfluid state. It is well-known that the onset of
superfluidity is marked by the divergence of the boson propagator at zero frequency and
momentum G−1

ϕ (0,0) = 0. This property is known as the Thouless criterion [113]. Thus,
the closer and sharper the peak gets at the origin, the closer the system is to the phase
transition, until the spectral function eventually diverges at the critical temperature.
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(a) Iteration 7 (b) Iteration 8

Figure 4.6.: Iterations of the fermionic spectral function ρψ εF at unitarity for βµ = 2.

(a) Iteration 7 (b) Iteration 8

Figure 4.7.: Iterations of the bosonic dimer spectral function h2ρϕ εF /(8π) for βµ = 2.

In order to evaluate spectral functions in the symmetry-broken phase, one has to ensure
that the Thouless criterion [113] is fulfilled, i.e. the bosons have to be gapless. At the
same time, the gap parameter ∆ has to be updated selfconsistently. This is a challenging
numerical task and could not be implemented in the framework of this Thesis. There
are many approaches and approximations to determine the gap parameter [42, 83]. One
way might be to choose ∆ and a modified interaction strength such that the Thouless
criterion is fulfilled [42, 62]. Non-selfconsistent results in the broken phase can be obtained
easily from the mean-field treatment presented in Section 3.3. The anomalous fermion
spectral function is already well-known in the literature, see also [12]. However, the bosonic
anomalous spectral function is barely discussed. First non-selfconsistent considerations are
presented in [86], however a selfconsistent treatment is absent and remains the subject for
future work. We leave this as an exercise for the reader.

As an outlook for future work, one might also consider the mass and spin-imbalanced case,
see [91, 90, 33]. In the following, we will use the spectral functions to calculate physical
observables and benchmark our results against existing data.
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Radio-frequency spectroscopy

From the calculated spectral functions, it is possible to obtain the experimentally measur-
able radio-frequency (rf) spectra [91, 105]. In this part, we apply our numerical framework
at unitarity to describe the recent experimental data from MIT [71]. For the computation
of rf spectra I(ω) from the fermion spectral functions ρψ, we take the formula [42]

I(ω) =

∫
q
ρψ(εq − ω − µ, q)nF (εq − ω − µ) . (4.23)

Note that the chemical potential µ(T ) is temperature-dependent and has to be determined
selfconsistently from the number equation (4.28). More explicitly, the number density
n = 1/(3π2) is fixed by the choice kF = 1 and temperature is measured in units of TF .
Consequently, the chemical potential µ(T ) has to be chosen such that the density stays
constant [111]. It is easy to see that the rf spectrum is normalized to the density n [42],

n = 2

∫ ∞

−∞
dλ I(λ) . (4.24)

Fig. 4.8 shows our results in comparison with the experimental data from MIT [71]. Apart
from adjusting the peak heights, no fitting parameter have been used. In order to account
for the finite rectangular rf pulse duration and, thus, a finite experimental resolution,
the calculated spectra have to be convolved with sinc2(ωT/2), where T is the rf pulse
duration [42]. Additionally, the curves have to be right-shifted by an amount of 0.09εF to
eliminate the residual final state effect [46]. Even after taking into account all these possible
factors, the calculated rf spectra do not fit the experimental data for higher temperatures
very well. This was also observed in [46] for the case of a highly spin-imbalanced unitary
Fermi gas. A possible explanation might be the absence of a trap average, see e.g. [104],
since the trap potential is not ideally box shaped.

Tan contact

Another test of the calculated spectral functions is the determination of the momentum-
dependent occupation number n(p) and Tans contact C [98, 52]. The contact C can be
calculated in many different ways [47, 79]. One way is via the large frequency behavior of
the rf spectrum I(ω) [42, 105]

lim
ω→∞

I(ω) =
C

2
√
2π2

ω−3/2 . (4.25)

Another direct way is via the imaginary-time boson propagator Gϕ(τ,x) [98]

C = −Gϕ(τ = 0−,x = 0) , (4.26)

which is used by imaginary-time computations like the Luttinger-Ward approach [33]. In
this work, we extract the contact via the large momentum behavior of the occupation
number n(p) [9, 47]

n(p) =

∫
λ
ρψ(λ,p)nF (λ) , lim

p→∞
n(p) =

C

p4
. (4.27)
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Figure 4.8.: (a) Calculated ejection rf spectra I(ω) for the spin-balanced unitary Fermi gas
as a function of the reduced temperature T/TF . Results of this work (solid
lines) are compared to experimental data from MIT [71] (points). A Fourier
broadening of 0.1εF to account for the finite experimental resolution, and a
right-shift by 0.09εF to account for the final state interaction were applied. (b)
Peak position (Ep = −h̄ω) and (c) full width at half maximum Γ extracted
from the rf spectra. The red vertical dashed line in (b) and (c) marks the
superfluid phase transition.

Fig. 4.10 shows results for the Tan contact obtained with the spectral approach in compar-
ison with the Luttinger-Ward [33] and Keldysh [62] approach. We note that the contact
of the imaginary-time Luttinger-Ward method was determined directly from the boson
propagator, while the contact of the real-time approaches was calculated from the large
momentum behavior of the occupation number. Thus, these results are not directly com-
parable since the imaginary-time results are obtained with a different method. However,
both real-time approaches seem to yield the same results.

Additionally, we show the momentum density distribution functions n(p) in a double
logarithmic plot for different βµ in Fig. 4.9. The 1/p4 tail for p ≫ kF is clearly visible.
We show lattice Monte Carlo results of Marc Bauer from our group for comparison. In the
simulations, a lattice size of 133 spatial points and 160 imaginary-time steps is used [5]. In
agreement with other works, the contact from selfconsistent T-matrix approaches seems
to be slightly larger than experimental data or lattice Monte Carlo results [71]. Thus, it
is not surprising that the large momentum tail of our results is slightly above the lattice
data.



24 Chapter 4 BCS-BEC Crossover

10 1 100 101

p/kF

10 4

10 3

10 2

10 1

100

n(
p)

Lattice
Spectral (This work)
C/p4 Fit

(a) βµ = −0.5

10 1 100 101

p/kF

10 4

10 3

10 2

10 1

100

n(
p)

Lattice
Spectral (This work)
C/p4 Fit

(b) βµ = 0.5

Figure 4.9.: Large p behavior of the occupation number n(p). Results of this work are
compared to lattice Monte Carlo data from [5].

Density equation of state

The last benchmark of the calculated spectral functions is the density equation of state.
Thermodynamic quantities, such as the total particle density, can be calculated precisely
in Euclidean frequencies without the need of analytic continuation. For this reason, it is a
good way to validate the new spectral approach against well tested and robust imaginary-
time calculations.

The total density n of fermions at finite chemical potential µ and temperature T can be
calculated from the spectral function via [105]

n = 2T
∑
ωn

∫
p
Gψ(ωn,p) = 2

∫
λ,p

ρψ(λ,p)nF (λ) . (4.28)

Fig. 4.11 shows the results for the normalized density n/n0 as a function of dimensionless
chemical potential βµ in comparison with all other available approaches. The density n0
of the non-interacting Fermi gas is given by n0 = 2

∫
p nF (p

2 − µ) = −2Li3/2(−eβµ)/λ3T ,
where λT =

√
4π/T is the thermal wavelength and Li3/2 is a polylogarithm function [1].

In the calculation of the density through the spectral function, the high momentum tail
can not be neglected. If the numerical spectral function is given on a finite grid with
momentum cutoff Λ ≫ kF , the contribution from outside the grid follows with (4.27),

δn>Λ = 2

∫ ∞

Λ

d3p

(2π)3
C

p4
=

C

π2Λ
, (4.29)

where C is the contact introduced before. Note that this estimation is only valid when
the numerical cutoff Λ is chosen large enough, such that the asymptotic behavior set in
already. Then one can extrapolate the large p region and take its contribution into account.
Fig. 4.9 shows that our numerics reproduce the asymptotic 1/p4 tail very well for p ≈ 8kF
already. The missing contribution from the high momentum tail is around 10%.

It is important to note that our real-time method reproduces the results of the well tested
Luttinger-Ward approach [43, 33]. Moreover, the other real-time approach based on the
Keldysh formalism agrees very well with our results. This agreement is crucial since all
methods build on the same underlying theory and resummation of diagrams.



4.3 Results 25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T/TF

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

C/
N

k F

Luttinger-Ward
Keldysh
Spectral (This work)

Figure 4.10.: Dimensionless contact C/NkF of the spin-balanced unitary Fermi gas as
a function of the reduced temperature T/TF . Results of this work are
compared to the Luttinger-Ward approach in imaginary-time [33] and an-
other real-time approach using the Keldysh formalism [62]. The contact
from the real-time approaches was obtained from the large momentum tail
n(k) = C/k4.
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Figure 4.11.: Normalized density n/n0 of the spin-balanced unitary Fermi gas as a function
of dimensionless chemical potential βµ. Results directly obtained in real
frequencies (this work) in comparison with experimental data from MIT [61],
lattice Monte Carlo data from [5], Luttinger-Ward results [43] and another
real-time approach based on the Keldysh formalism [62].





Chapter 5

Fermi Polaron

In this Chapter, we consider the extremely spin-imbalanced case in which there is only one
spin-↓ impurity inside a Fermi sea of spin-↑ particles. This scenario is well-known as the
Fermi polaron problem and has been studied extensively in vacuum [103, 56]. However,
spectral properties at finite temperature were just recently investigated by Hu et al. [46]
with a non-selfconsistent approach. In the following, we apply our fully selfconsistent real-
time framework to study the spectral and quasiparticle properties of the Fermi polaron at
finite temperature.

5.1. Theoretical description

In this Section, we introduce the general theoretical description of a single impurity im-
mersed in a Fermi sea of particles with different spin and derive the selfconsistent equations.
The general microscopic action which accounts for spin and mass imbalance is given by

S[ψ, ϕ] =

∫
τ,x

[ ∑
σ=↑,↓

ψ∗
σ(∂τ −∇2/(2mσ)− µσ)ψσ + νϕ∗ϕ− h(ϕ∗ψ↑ψ↓ − ϕψ∗

↑ψ
∗
↓)
]
, (5.1)

where 2m↑ = 1 and µ↑ is the mass and chemical potential of the majority atoms, and
2m↓ = (1+α)/(1−α) and µ↓ ≤ 0 is for the impurity. The mass imbalance α is connected
to the reduced mass 2mr = (1+α)/2 and satisfies −1 < α = (m↓−m↑)/(m↓+m↑) < 1.

The selfconsistent equations for the Fermi polaron problem can be derived by the same
means as described in Chapter 4, however, some simplifications can be made. First of all,
we can replace again all three-point functions by the classical vertices Γ(3) = S(3). More-
over, since there is only one impurity in the system, the majority atoms are barely affected
and can be treated as non-interacting particles. The simplified Dyson-Schwinger equations
for the Fermi polaron problem are shown diagrammatically in Fig. 5.1 and will be discussed
in the following. It is well-known that the strong spin-imbalance hinders the system to
form a condensate, such that the physics is described completely by the normal phase [90].
However, there is still a non-trivial polaron-to-molecule phase transition [102].

As pointed out before, the spin-↑ majority atoms in the Fermi sea are not dressed and can
be described by the classical fermion Green’s function

G
(0)
↑ (ωn,p) =

1

−iωn + εp − µ↑
. (5.2)

where εp = p2/(2m↑) = p2 is the majority dispersion relation. However, the impurity
Green’s function obtains a self-energy and can be written as (see Eq. (4.4))

G↓(ωn,p) =
1

−iωn + ε
(I)
p − µ↓ − Σ(ωn,p)

, (5.3)

where ε(I)p = p2/(2m↓) = p2 (1− α)/(1 + α) is the impurity dispersion relation [46].

27
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Figure 5.1.: Simplified Dyson-Schwinger equations for the Fermi polaron. The blue prop-
agator of the Fermi sea is just the classical fermion propagator and only the
red polaron Greens function gets dressed. All vertices are classical.

The impurity self-energy Σ(ωn,p) is given by (see Fig. 5.1)

Σ(ωn,p) = h2
∫

d3q

(2π)3
T
∑
Ωm

Gϕ(Ωm, q)G
(0)
↑ (Ωm − ωn, q − p) . (5.4)

And the molecule propagator Gϕ(ωm, q) satisfies again the relation (4.4)

G−1
ϕ (ωm, q) = − h2

8πa
−Π(ωn,p) , (5.5)

with the molecule self-energy Π(ωn,p) given by

Π(ωn,p) = h2
∫

d3q

(2π)3

T∑
Ωm

G↓(Ωm, q)G
(0)
↑ (ωn − Ωm,p− q)− 1 + α

2q2

 , (5.6)

where the counterterm changed because of the mass-imbalance [46].

Again, these coupled equations can be solved selfconsistently in real frequencies with the
spectral representation. Analytical continuation iωn = ω+i0+ to the retarded self-energies
and taking the imaginary part yields (see Eq. (4.9))

ImΣR(ω,p) = −πh2
∫
q
ρϕ(ω + εq−p − µ↑, q)nF (εq−p − µ↑) ,

ImΠR(ω,p) = πh2
∫
q
ρ↓(ω − εp−q + µ↑, q)

[
1− nF (εp−q − µ↑)

]
. (5.7)

Here, we used the fact that the quantum statistics of the impurity is not relevant and the
molecule occupation number is vanishingly small in the single-impurity limit [46]. For a
finite impurity concentration, one has to be a bit more careful, see [48, 111]. Additionally,
we are left with only 2-dimensional integrals since the majority is non-interacting and the
spectral parameter can be integrated out.

From here, the real part can be obtained again via the Kramers-Kronig relation (4.10)
and all the numerical steps stay the same. For the boson self-energy, the same subtraction
schemes can be used. We refer the reader to Appendix A.5 and B for more details on the
analytical results and numerical implementation.
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5.2. Results

The Fermi polaron problem has been studied intensively in previous works. First excitation
spectra at zero temperature were obtained by R. Schmidt and T. Enss using fRG and Padé
approximation methods in [103]. Their results were confirmed and generalized with the
fRG in real frequencies by K. Kamikado et al. in [56]. Since then a numerous amount of
articles concerning the quasiparticle properties of the 3-dimensional Fermi polaron have
been published [72, 100, 117, 119]. Also spin-imbalanced gases in general have been
investigated with different methods [14, 89, 115, 117]. Recently, also 2-dimensional Fermi
gases [104, 6, 74], Bose polarons [112] and general Bose-Fermi mixtures [69] have been
studied.

With the spectral approach described above, we can obtain spectral functions at arbitrary
temperatures and mass-imbalances. In this part, we will show the equivalence to previous
works for the mass-balanced case and discuss possible generalizations. In the end, selfcon-
sistent and non-selfconsistent results for the rf spectra of the unitary Fermi polaron are
presented and compared to recent works [111, 49, 124].

Let us begin with a general discussion of the results at zero temperature. These are
obtained by replacing nF (x) → θ(−x), as mentioned in Section 4.1, and using the vacuum
boson self-energy. Fig. 5.2 shows the selfconsistent polaron spectral functions at T = 0
for different interaction strengths. These results agree well with the ones obtained in [103,
56] using the fRG. For the polaron ground state energy at unitarity, we obtain µ↓ ≃ −0.62
which compares favorably with [16]. The non-selfconsistent result is µ↓ ≃ −0.61 and shows
the equivalence to Chevy’s variational ansatz [14, 17]. In vacuum, the chemical potential
of the non-interacting Fermi sea is µ↑ = 1. Contrary to the spin-balanced case, the Padé
approximation method from [103] is quite reasonable in the polaron case. This might stem
from the fact that the majority particles are not dressed and the structure of the polaron
spectral function is simpler. However, only real-time approaches, like in [56] or this work,
can compute fully correct spectral functions.

From the spectral functions one can obtain important information about the physics of
the system. First of all, one can notice the appearance of a second peak for larger inter-
action strengths (kFa)

−1 while the first one disappears. This is known as the repulsive
polaron [100]. Furthermore, one can notice the shift in ground state energy and a changing
slope of the attractive polaron peak. Together with the boson ground state energy, the
first observation leads to the well-known polaron-to-molecule transition [103]. The second
observation is connected to the divergent effective mass of the attractive polaron [119].

(a) (kF a)
−1 = −0.5 (b) (kF a)

−1 = 0 (c) (kF a)
−1 = 0.5 (d) (kF a)

−1 = 1

Figure 5.2.: Results for the Fermi polaron spectral function ρ↓ εF at T = 0 at different
interaction strengths (kFa)

−1. These results agree well with [103, 56].
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For larger interaction strengths the slope gets smaller, which corresponds to a larger effec-
tive mass. Eventually, the slope gets zero and can bend back. Besides the effective mass,
other quasiparticle properties like the weight Z, decay width Γ or the contact C can be
computed from the spectral function [100].

Fig. 5.3 shows the effect of finite temperature in the Fermi polaron problem. One can
see that the quasiparticle peak at low momenta gets broadened significantly and slightly
shifted. Away from unitarity, one can also observe other phenomena, see [46] for more
details. Note that the chemical potential µ↑(T ) of the majority particles is temperature-
dependent and has to be determined from the number equation for an ideal Fermi gas,
see Section 4.3. At T = 0.2TF , the chemical potential is µ↑ = 0.964. It is compelling to
investigate quasiparticle properties as a function of T , some of which are considered in [46].
One could, for example, compute the quasiparticle weight Z(T ) or the contact C(T ). It
is anticipated that Z should tend to unity for large temperatures, as the spectral function
becomes more and more classical. Unfortunately, this analysis could not be finalized before
the submission of this Thesis.

In Fig. 5.4, the convergence behavior of the polaron spectral function for two different
temperatures is shown. Similar to the spin-balanced BCS-BEC case in Section 4.3, the
spectral function at higher temperature converges faster and smoother. However, only 5-6
iterations are needed to converge in the polaron case. This is again due to the fact that the
majority particles are not dressed and strong correlations do not play a significant role. It is
observed that the change from the first to the second iteration is very pronounced, however,
further iterations have not so much impact. Other comparisons of non-selfconsistent and
selfconsistent results can be found in [15, 49, 112]. In the following, we will make this
comparison more explicit by using calculated ejection rf spectra.

Recently, rf spectra and contact of an extremely spin-imbalanced Fermi gas at unitarity
were measured at MIT [124]. Shortly after, Tajima et al. published first considerations
in [111], and last year Hu et al. published non-selfconsistent real-time results in [46]. Here,
we want to extend these results to selfconsistent rf spectra.

(a) T = 0 (b) T = 0.2TF

Figure 5.3.: Effect of finite temperature. Spectral functions of the unitary Fermi polaron
at (a) T = 0 and (b) T = 0.2TF .
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Figure 5.4.: Convergence of the polaron spectral function at different temperatures.

Fig. 5.5 shows the non-selfconsistent and selfconsistent results for the polaron rf spectra.
These results were obtained in the limit of zero impurity concentration using the same
formula (4.23) as in Section 4.3, see also [46, 111]. For the polaron it reads

I(ω) =

∫
q
ρ↓(ε

(I)
q − ω − µ↓, q)nF (ε

(I)
q − ω − µ↓) . (5.8)

As mentioned above, we consider the mass-balanced case. The chemical potential of the
impurity is µ↓ = 0. As in the previous Section, the chemical potential of the Fermi sea
µ↑(T ) is temperature-dependent and has to be determined from the number equation.
Additionally, a Fourier broadening of 0.1εF and a right-shift of 0.09εF were performed
to account for the experimental features. It is found that these results agree well with
previous work [46, 111]. However, both approaches cannot describe the experimental
data in [124] correctly. Since the experimental setup was similar to [71], as discussed in
Section 4.3 for the spin-balanced Fermi gas, the reason for this mismatch might be again
the missing trap average for the harmonic trap potential. Other reasons for the mismatch
are discussed in [46, 111] and could be due to absent many-body correlations which are
not included in the T-matrix approach.

As an outlook for future work, the next step could be to investigate missing three-body
correlations [11, 111]. There exist some approaches to include those effects, however,
fully selfconsistent real-time computations are lacking. The spectral method presented in
this work provides excellent possibilities to incorporate such three-body diagrams while
keeping computational costs quite reasonable. Another possibility would be to include
momentum-dependent vertices, as discussed in [18, 32, 28, 97, 96]. This was already
implemented successfully in the spectral functional approach for scalar field theory [45].
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Figure 5.5.: (a) Calculated ejection rf spectra I(ω) for the unitary Fermi polaron as a func-
tion of the reduced temperature T/TF . Non-selfconsistent results (blue solid
lines) are compared to selfconsistent results (orange solid lines). A Fourier
broadening of 0.1εF to account for the finite experimental resolution, and a
right-shift by 0.09εF to account for the final state interaction were applied.
(b) Peak position (Ep = −h̄ω) and (c) full width at half maximum Γ extracted
from the rf spectra.



Chapter 6

Conclusion and Outlook

In this Thesis, we calculated spectral functions of strongly interacting Fermi gases directly
in real frequencies without the need of numerical reconstruction methods by iteratively
solving the corresponding Dyson-Schwinger equations.

In the first part, we focused on the spectral properties of the spin-balanced BCS-BEC
crossover. After introducing the basic theoretical foundations in Chapter 2 and 3, we
presented the main achievements of this work in Chapter 4. A fully selfconsistent numerical
framework in real frequencies was developed. Additionally, analytic results for the non-
selfconsistent boson self-energy with general mass and spin-imbalance at zero and finite
temperature were derived. Novel results for the bosonic dimer and the fermionic single-
particle spectral functions in the normal phase of the BCS-BEC crossover phase diagram
were obtained. To benchmark our calculations, we applied our method to the unitary Fermi
gas and compared with existing theoretical predictions and experimental data. Excellent
agreement with previous work in the normal phase is found. The symmetry-broken phase
turns out to be more challenging and requires additional work in the future.

In the second part, we applied our selfconsistent real-time framework to the Fermi polaron
problem in Chapter 5. In this case, some simplifications could be made which reduced the
number of integrals and improved the numerical performance. Previous fRG and T-matrix
results were confirmed and extended. Despite employing a selfconsistent approach, the
experimental data could not be described accurately. The reason for this might involve the
lack of many-body correlations, which can be investigated with the spectral approach.

The results obtained in this work promise a wide range of possible applications, including
transport properties and the ab-initio calculation of spectral functions in the superfluid
phase of the BCS-BEC crossover. Moreover, the numerical framework can be extended
to full momentum-dependent vertices, or general mass and spin-imbalance. The spectral
approach can be used to study various quasiparticle properties of strongly interacting
Fermi gases at finite temperature. Also more involved processes like three-body scattering
diagrams can be considered in the future.
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Appendix A

Appendix

A.1. Propagators

In this Appendix, we derive the classical propagators in superfield notation [82].

The full action of the single-channel model (3.6) in position space is [9]

S[ψ, ϕ] =

∫
X,Y

ψ∗
i (Y )

[(
−∂τ −∇2

X − µ
)
δ(X − Y )

]
ψi(X)

+

∫
X,Y

ϕ∗(Y )
[
ν δ(X − Y )

]
ϕ(X)

+

∫
X,Y,Z

[
−h δ(Z −X)δ(Y −X)

]
ϕ∗(Z)ψ1(Y )ψ2(X)

+

∫
X,Y,Z

[
h δ(Z −X)δ(Y −X)

]
ϕ(Z)ψ∗

1(Y )ψ∗
2(X) . (A.1)

Defining the Fourier transforms

ψ(X) =

∫
Q
ψ(Q)e−iQX , ψ∗(X) =

∫
Q
ψ∗(Q)eiQX . (A.2)

The full action in momentum space is

S[ψ, ϕ] =

∫
Q,Q′

ψ∗
i (Q)

[
(−iωn + q2 − µ)δ(Q−Q′)

]
ψi(Q

′)

+

∫
Q,Q′

ϕ∗(Q)
[
ν δ(Q−Q′)

]
ϕ(Q′)

+

∫
Q,Q′,Q′′

[
−h δ

(
Q− (Q′ +Q′′)

)]
ϕ∗(Q)ψ1(Q

′)ψ2(Q
′′)

+

∫
Q,Q′,Q′′

[
h δ
(
Q− (Q′ +Q′′)

)]
ϕ(Q)ψ∗

1(Q
′)ψ∗

2(Q
′′) . (A.3)

In superfield notation [82], we can write the action as

S[Φ] = Sψiψ
∗
i ψ∗

i ψi + Sϕϕ
∗
ϕ∗ϕ+ Sψ2ψ1ϕ∗ϕ∗ψ1ψ2 + Sψ

∗
2ψ

∗
1ϕϕψ∗

1ψ
∗
2 , (A.4)

where the classical propagators in momentum space are given by

Sψiψ
∗
i =

δ

δψi

δ

δψ∗
i

S[Φ] = (−iωn + q2 − µ)δ(Q−Q′) ,

Sϕϕ
∗
=

δ

δϕ

δ

δϕ∗
S[Φ] = ν δ(Q−Q′) ,

Sψ2ψ1ϕ∗ =
δ

δψ2

δ

δψ1

δ

δϕ∗
S[Φ] = −h δ

(
Q− (Q′ +Q′′)

)
,

Sψ
∗
2ψ

∗
1ϕ =

δ

δψ∗
2

δ

δψ∗
1

δ

δϕ
S[Φ] = h δ

(
Q− (Q′ +Q′′)

)
. (A.5)
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We can also check that the anomalous components are given by

Sϕϕ =
δ

δϕ

δ

δϕ
S[Φ] = 0 ,

Sϕ
∗ϕ∗ =

δ

δϕ∗
δ

δϕ∗
S[Φ] = 0 ,

Sψ1ψ2 =
δ

δψ1

δ

δψ2
S[Φ] = hϕ∗(Q) δ

(
Q− (Q′ +Q′′)

)
,

Sψ
∗
2ψ

∗
1 =

δ

δψ∗
2

δ

δψ∗
1

S[Φ] = hϕ(Q) δ
(
Q− (Q′ +Q′′)

)
. (A.6)

Note that for fermions and bosons∫
X
ψ∗
i (X)

(
∂τ −∇2 − µ

)
ψi(X) =

∫
X
ψi(X)

(
∂τ +∇2 + µ

)
ψ∗
i (X) ,∫

X
ϕ∗(X)

(
∂τ −∇2 − µ

)
ϕ(X) =

∫
X
ϕ(X)

(
−∂τ −∇2 − µ

)
ϕ∗(X) , (A.7)

and therefore the two-point functions satisfy the symmetries

Sψ
∗
i ψi(P ) = −Sψiψ∗

i (−P ) , Sϕ
∗ϕ(P ) = Sϕϕ

∗
(−P ) , (A.8)

whereas the three-point function does not contain any derivatives and is anti-symmetric
in the fermionic fields, e.g.,

Sψ1ψ2ϕ∗ = −Sψ2ψ1ϕ∗ . (A.9)

The anomalous propagators satisfy the following symmetries, see also [33],

Sψ1ψ2(P ) = Sψ
∗
2ψ

∗
1 (−P )∗ , Sϕϕ(P ) = Sϕ

∗ϕ∗(−P )∗ . (A.10)



A.2 Derivation of DSEs 37

A.2. Derivation of DSEs

In this Appendix, we derive the Dyson-Schwinger equations for the propagators.

The starting point is the general DSE in Eq. (2.11), see also [82],

δΓ [Φ]

δΦa
=

δS

δϕa

[
ϕb = Φb +Gbc ·

δ

δΦc

]
. (A.11)

Applying this formula to the action (A.4) in superfield notation yields, e.g., for the fermion
propagator

δS

δψ∗
1

= Sψ1ψ∗
1ψ1 + Sψ

∗
2ψ

∗
1ϕϕψ∗

2 . (A.12)

In terms of the effective fields:
δΓ

δΨ∗
1

= Sψ1ψ∗
1

[
Ψ1 +Gψ1k ·

δ

δΦk

]
+ Sψ

∗
2ψ

∗
1ϕ

[
Φ+Gϕl ·

δ

δΦl

] [
Ψ∗

2 +Gψ∗
2m

· δ

δΦm

]
= Sψ1ψ∗

1Ψ1 + Sψ
∗
2ψ

∗
1ϕΦΨ∗

2 + Sψ
∗
2ψ

∗
1ϕGϕψ∗

2
. (A.13)

Applying another δ/δΨ1 derivative yields

δ2Γ

δΨ1δΨ∗
1

= Sψ1ψ∗
1 + Sψ

∗
2ψ

∗
1ϕ

δ

δΨ1
Gϕψ∗

2
. (A.14)

Now, we can use the fact that [122]

Gac · Γcb = (−1)abδab , (A.15)

and therefore [82]
δ

δΦa
Gbc = −(−1)ab(−1)eeGbd · Γdae ·Gec , (A.16)

to obtain the derivative of the propagator
δ

δΨ1
Gϕψ∗

2
= Gϕϕ∗ · Γϕ

∗ψ1ψ2 ·Gψ2ψ∗
2
. (A.17)

This is a shorthand notation for the full expression
δ

δΨ1(x)
Gϕψ∗

2
(y, y) =

∫
u,v
Gϕϕ∗(y, u) Γ

ϕ∗ψ1ψ2(u, x, v)Gψ2ψ∗
2
(v, y) . (A.18)

In the end, we arrive at

Γψ1ψ∗
1 = Sψ1ψ∗

1 + Sψ
∗
2ψ

∗
1ϕ ·Gϕϕ∗ · Γϕ

∗ψ1ψ2 ·Gψ2ψ∗
2
. (A.19)

This is exactly the DSE which is depicted in the self-energy diagram in Fig. 4.1, after
bringing the fields into canonical order and applying the approximation Γϕ

∗ψ1ψ2 = Sϕ
∗ψ1ψ2 ,

which gives

Γψ1ψ∗
1 = Sψ1ψ∗

1 − Sψ
∗
2ψ

∗
1ϕ ·Gϕϕ∗ · Sψ2ψ1ϕ∗ ·Gψ2ψ∗

2
. (A.20)

There will be an overall δ(Q−Q′), so we can write in momentum space

Γψ1ψ∗
1 (P ) = Sψ1ψ∗

1 (P ) + h2
∫
Q
Gϕϕ∗(Q) ·Gψ2ψ∗

2
(Q− P ) . (A.21)
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The same calculation for the boson propagator:

δS

δϕ∗
= Sϕϕ

∗
ϕ+ Sψ2ψ1ϕ∗ψ1ψ2 . (A.22)

In terms of the effective fields:

δΓ

δΦ∗ = Sϕϕ
∗
[
Φ+Gϕk ·

δ

δΦk

]
+ Sψ2ψ1ϕ∗

[
Ψ1 +Gψ1l ·

δ

δΦl

] [
Ψ2 +Gψ2m · δ

δΦm

]
= Sϕϕ

∗
Φ+ Sψ2ψ1ϕ∗Ψ1Ψ2 + Sψ2ψ1ϕ∗Gψ1ψ2 . (A.23)

Applying another δ/δΦ derivative yields

δ2Γ

δΦδΦ∗ = Sϕϕ
∗
+ Sψ2ψ1ϕ∗ δ

δΦ
Gψ1ψ2

= Sϕϕ
∗
+ Sψ2ψ1ϕ∗ ·Gψ1ψ∗

1
· Γψ∗

1ϕψ
∗
2 ·Gψ∗

2ψ2 . (A.24)

Arranging the fields and applying the approximation Γψ
∗
1ϕψ

∗
2 = Sψ

∗
1ϕψ

∗
2 gives

Γϕϕ
∗
= Sϕϕ

∗
+ Sψ2ψ1ϕ∗ ·Gψ1ψ∗

1
· Sψ∗

2ψ
∗
1ϕ ·Gψ2ψ∗

2
. (A.25)

In momentum space, this expression reads

Γϕϕ
∗
(P ) = Sϕϕ

∗
(P )− h2

∫
Q
Gψ1ψ∗

1
(Q) ·Gψ2ψ∗

2
(P −Q) . (A.26)

For completeness, the Dyson-Schwinger equations for the three- and four-point function
are depicted in Fig. A.1.

In the following, we will derive the other equations for the off-diagonal components. See
also Ref. [41, 86], or Ref. [30] on page 443-446.

The other DSE’s for the off-diagonal fermionic terms are

Γψ
∗
2ψ

∗
1 = Sψ

∗
2ψ

∗
1ϕϕ+ Sψ

∗
2ψ

∗
1ϕ

δ

δΨ∗
2

Gϕψ∗
2

= Sψ
∗
2ψ

∗
1ϕϕ+ Sψ

∗
2ψ

∗
1ϕ ·Gϕϕ · Γϕψ

∗
2ψ

∗
1 ·Gψ∗

1ψ
∗
2

= ∆− h2
∫
Q
Gϕϕ(Q) ·Gψ∗

2ψ
∗
1
(Q− P ) , (A.27)

Γψ1ψ2 = −Sψ2ψ1ϕ∗ϕ∗ − Sψ2ψ1ϕ∗ δ

δΨ1
Gϕ∗ψ1

= −Sψ2ψ1ϕ∗ϕ∗ − Sψ2ψ1ϕ∗ ·Gϕ∗ϕ∗ · Γϕ
∗ψ1ψ2 ·Gψ2ψ1

= ∆∗ − h2
∫
Q
Gϕ∗ϕ∗(Q) ·Gψ1ψ2(Q− P ) , (A.28)

One can see that Γψ1ψ2(P ) = Γψ
∗
2ψ

∗
1 (−P )∗ as for the classical two-point functions.

Therefore, one only needs two functions, one normal and one anomalous component.
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In the end, we have a fermionic matrix with entries

ΓΨΨ†
=

(
Γ11
ψ Γ12

ψ

Γ21
ψ Γ22

ψ

)
=

(
Γψ1ψ∗

1 Γψ1ψ2

Γψ
∗
2ψ

∗
1 Γψ

∗
2ψ2

)
, (A.29)

which satisfies

GΨΨ† =
(
ΓΨΨ†

)−1
, (A.30)

and has entries

GΨΨ† =

(
Gψ1ψ∗

1
Gψ1ψ2

Gψ∗
2ψ

∗
1

Gψ∗
2ψ2

)
=

1

Γ11
ψ Γ22

ψ − Γ12
ψ Γ21

ψ

(
Γ22
ψ −Γ12

ψ

−Γ21
ψ Γ11

ψ

)
. (A.31)

More explicitly for the normal fermion propagator, see [83, 86],

Gψ1ψ∗
1
(Q) =

−Sψ2ψ∗
2 (−Q) + Σ11(−Q)[

Sψ1ψ∗
1 (Q)− Σ11(Q)

] [
−Sψ2ψ∗

2 (−Q) + Σ11(−Q)
]
−
[
Γψ1ψ2(Q)

]2 . (A.32)

One has to be careful with the analytic continuation in the self energy. For Σ11(Q) we
have it already, but what about Σ11(−Q)?

For the first case, we had with iωn → ω + i0+:

Iψ(ω, λ1, λ2) =
1

−ω + λ1 + λ2
+ iπδ(λ1 + λ2 − ω) . (A.33)

For the case Σ11(−Q), we would have

I ′ψ(ω, λ1, λ2) =
1

ω + λ1 + λ2
− iπδ(λ1 + λ2 + ω) . (A.34)

Thus, it’s just I ′(ω, λ1, λ2) = I(−ω, λ1, λ2)∗, as written in [86].

−=

−=

Figure A.1.: Dyson-Schwinger equation for the three- and four-point function for the full
Yukawa theory with background interactions, see [18].
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The other DSE’s for the off-diagonal bosonic terms are, see Ref. [30] on page 212,

Γϕ
∗ϕ∗ = Sψ2ψ1ϕ∗ δ

δΦ∗Gψ1ψ2 = Sψ2ψ1ϕ∗ ·Gψ1ψ2 · Γψ2ϕ∗ψ1 ·Gψ1ψ2

= h2
∫
Q
Gψ1ψ2(Q) ·Gψ1ψ2(P −Q) ,

Γϕϕ = Sψ
∗
2ψ

∗
1ϕ

δ

δΦ
Gψ∗

1ψ
∗
2
= Sψ

∗
2ψ

∗
1ϕ ·Gψ∗

1ψ
∗
2
· Γψ∗

2ϕψ
∗
1 ·Gψ∗

1ψ
∗
2

= h2
∫
Q
Gψ∗

1ψ
∗
2
(Q) ·Gψ∗

1ψ
∗
2
(P −Q) . (A.35)

Also in this case, we can see the symmetry Γϕϕ(P ) = Γϕ
∗ϕ∗(−P )∗.

In the end, we have a bosonic matrix with entries

ΓΦΦ†
=

(
Γ11
ϕ Γ12

ϕ

Γ21
ϕ Γ22

ϕ

)
=

(
Γϕϕ

∗
Γϕϕ

Γϕ
∗ϕ∗ Γϕ

∗ϕ

)
, (A.36)

which satisfies

GΦΦ† =
(
ΓΦΦ†

)−1
, (A.37)

and has entries

GΦΦ† =

(
Gϕϕ∗ Gϕϕ
Gϕ∗ϕ∗ Gϕ∗ϕ

)
=

1

Γ11
ϕ Γ22

ϕ − Γ12
ϕ Γ21

ϕ

(
Γ22
ϕ −Γ12

ϕ

−Γ21
ϕ Γ11

ϕ

)
. (A.38)

For the normal boson propagator, e.g., we have [83]

Gϕϕ∗(Q) =
χ11(−Q)

χ11(Q)χ11(−Q)− χ12(Q)2
, (A.39)

where χ11(Q) = Sϕϕ
∗
(Q) + Π11(Q) and χ12(Q) = Π12(Q) [86].
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A.3. Matsubara sums

In this Appendix, we calculate the Matsubara sum in the fermion self-energy, see Eq. (4.7),

Iψ(ωn, λ1, λ2) = T
∑
Ωm

1

iΩm − λ1

1

i(Ωm − ωn)− λ2
, (A.40)

where Ωm = 2mπT are bosonic frequencies and ωn = (2n+1)πT are fermionic frequencies.

The Bose-Einstein distribution nB(z) = 1/(eβz − 1) has simple poles at z = iΩn with
residue 1/β, and the Fermi distribution nF (z) = 1/(eβz + 1) has simple poles at z = iωn
with residue −1/β.

The integral along the contour C over bosonic/fermionic frequencies ωn gives [90]

T
∑
ωn

h(iωn) = ±
∮
C
nB/F (z)h(z) = ±

∑
n

Res[nB/F (z)h(z), iωn] . (A.41)

If the function h(z) is analytical on the imaginary axis and vanishes at infinity, one can
deform the contour to exclude the poles on the imaginary axis and pick up the poles zn
of h(z). Note that the contour C′ runs clockwise now.

T
∑
ωn

h(iωn) = ±
∮
C′
nB/F (z)h(z) = ∓

∑
n

Res[h(z), zn]nB/F (zn) . (A.42)

Applying this to our example above gives

Iψ(ωn, λ1, λ2) =

∮
C′
nB(z)

1

z − λ1

1

z − iωn − λ2

=
−nB(λ1)

−iωn + λ1 − λ2
− nB(iωn + λ2)

iωn − λ1 + λ2

=
−nB(λ1)− nF (λ2)

−iωn + λ1 − λ2
, (A.43)

where we used nB(iωn + z) = −nF (z) for fermionic frequencies in the last line [90].

Analogously for the Matsubara sum in the boson self-energy, see Eq. (4.7),

Iϕ(ωn, λ1, λ2) = T
∑
Ωm

1

iΩm − λ1

1

i(ωn − Ωm)− λ2
, (A.44)

where now Ωm = (2m+1)πT are fermionic frequencies and ωn = 2nπT are bosonic frequencies.

Iϕ(ωn, λ1, λ2) = −
∮
C′
nF (z)

1

z − λ1

1

iωn − z − λ2

=
nF (λ1)

iωn − λ1 − λ2
− nF (iωn − λ2)

iωn − λ1 − λ2

=
1− nF (λ1)− nF (λ2)

−iωn + λ1 + λ2
, (A.45)

where we now used nF (iωn+ z) = nF (z) for bosonic frequencies. Additionally, we can use
the important identities nF (−z) = 1− nF (z) and nB(−z) = −1− nB(z).
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A.4. Renormalization

In this Appendix, we detail the renormalization procedure and the determination of the
model parameters. For more details, see also [18, 19, 90, 102].

The assumption of a pure contact interaction in the single-channel model (3.6) leads to
unphysical divergences in the theory. In the real world, however, interactions always have
a finite range re and, thus, a natural momentum cutoff Λ ∼ 1/re. In ultracold Fermi gases,
the effective range is on the order of the van der Waals length lvdw [102]. On the other
side, one finds that low-energy scattering physics is completely described by the scattering
length a and does not depend on the explicit form of the potential. Using this fact, one
can regularize the theory and then take the limit of zero range interactions in the end.

We note that the momentum integral in the boson self-energy (4.5) is linearly divergent
and needs regularization. This is provided by the renormalization of ν, which will cure
all divergences of the theory. The physical renormalization condition is given by the
connection to the two-body scattering length a in vacuum [103, 34]. The scattering of two
fermions is mediated by the exchange of the bosonic dimer ϕ. Evaluating the tree-level
diagram for the effective fermion-fermion scattering in Fig. A.2 shows that the scattering
amplitude f(k) is related to the full boson propagator Gϕ via [103, 125]

f(k) =
h2

8π
Gϕ(2k

2,0) , (A.46)

where E = 2k2 is the total energy in the center of mass frame of incoming fermions with
momenta k. This expression should be equal to the well-known result from low-energy
s-wave scattering theory with zero effective range [34, 102]

f(k) =
1

−1/a− ik
. (A.47)

Thus, the renormalization condition for two-body scattering in vacuum is

Gϕ(0,0) = −8πa

h2
. (A.48)

This can be written in terms of the bare detuning ν,

ν = − h2

8πa
+ Π̃ϕ(0,0) , (A.49)

where Π̃ϕ is the bare boson self-energy. Thus, the renormalized boson DSE is

Γ
(2)
ϕϕ∗(ω,p) = − h2

8πa
−
[
Π̃ϕ(ω,p)− Π̃ϕ(0,0)

]
. (A.50)

Gφ

h h

Figure A.2.: Tree-level diagram yielding the effective two-body scattering amplitude.
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The renormalized boson self-energy Πϕ(ω,p) = Π̃ϕ(ω,p) − Π̃ϕ(0,0), which also appears
in Eq. (4.4), is finite due to the counterterm Π̃ϕ(0,0). To determine this counterterm,
one has to consider the two-body problem in vacuum, i.e. T = µ = 0. In this case, the
full boson self-energy can be solved exactly [18, 102], since the fermions are not dressed.
Evaluating the self-energy loop integral with the bare fermion propagators yields

Π̃ϕ(0,0) = h2
∫ Λ

q

1

2εq
=
h2Λ

4π2
, (A.51)

where Λ is the aforementioned momentum cutoff that regularizes the integral. This coun-
terterm cures all linear divergences arising from the contact interaction and allows to take
the limit of Λ to infinity in the end. For example, the renormalized boson self-energy in
vacuum is then

Πϕ(ω,p) = h2
∫ Λ

q

[
1

−ω + εq + εp−q − i0+
− 1

2εq

]

=
h2

8π

√
−ω
2
+

p2

4
− i0+ , (A.52)

with Λ → ∞. For this reason, we can formally write the bare detuning ν as [42, 125]

ν = − h2

8πa
+

∫
q

1

2εq
. (A.53)
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A.5. Boson self-energy calculation

In this Appendix, we show the explicit computations and analytic results for the boson
self-energy with general spin and mass-imbalance. Throughout this part, we use the same
notation as introduced in Section 5.1. We start from the general expression for the non-
selfconsistent boson self-energy with mass-imbalance α,

Πϕ(ωn,p) = h2
∫
q

T∑
Ωm

G
(0)
↓ (Ωm, q)G

(0)
↑ (ωn − Ωm,p− q)− 1 + α

2q2

 . (A.54)

Inserting the classical fermion spectral functions, we obtain the well-known result

Πϕ(ωn,p) = h2
∫
q

T∑
Ωm

1

iΩm − ε
(I)
q + µ↓

1

i(ωn − Ωm)− εp−q + µ↑
− 1 + α

2q2


= h2

∫
q

1− nF (ε
(I)
q − µ↓)− nF (εp−q − µ↑)

−iωn + ε
(I)
q + εp−q − µ↓ − µ↑

− 1 + α

2q2

 , (A.55)

where ε(I)p = p2 (1−α)/(1+α). From here, one can obtain the real and imaginary part of
the retarded self-energy ΠRϕ (ω,p) after analytic continuation iωn → ω + i0+. It is useful
to separate the boson self-energy into a vacuum part and a temperature-dependent part,
ΠRϕ = ΠR,0ϕ +ΠR,Tϕ , where the vacuum part is given by

ΠR,0ϕ (ω,p) = h2
∫
q

 1

−ω + ε
(I)
q + εp−q − µ↓ − µ↑ − i0+

− 1 + α

2q2

 , (A.56)

Performing the variable shift q → q + (1 + α)p/2 makes the angle integration trivial and
we obtain further for the vacuum part

ΠR,0ϕ (ω,p) =
h2(1 + α)

4π2

∫ ∞

0
dq

[
q2

q2 − y − i0+
− 1

]
=
h2(1 + α)

8π

√
−y − i0+ , (A.57)

where we have defined

y =
(1 + α)

2

[
ω − (1− α)

2
p2 + µ↑ + µ↓

]
. (A.58)

The temperature-dependent part can be divided into the ↓ and ↑ contribution and is
obtained by the same means

ΠR,Tϕ,↓ (ω,p) = −h
2(1 + α)

4π2

∫ ∞

0

χ↓(q) q
2 dq

q2 − y − i0+
, (A.59)

ΠR,Tϕ,↑ (ω,p) = −h
2(1 + α)

4π2

∫ ∞

0

χ↑(q) q
2 dq

q2 − y − i0+
, (A.60)

where we have defined the two angle-integrated functions χ↓(q) and χ↑(q).
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The angle-integrated functions at finite temperature are given by

χ↓(q) =

∫ 1

−1

dx

2
nF

(
(1− α)

(1 + α)

[
q + (1 + α)p/2

]2 − µ↓

)

=


nF

(
(1−α)
(1+α)q

2 − µ↓

)
, p = 0

T
2(1−α)pq ln

(
nF

(
µ↓− (1−α)

(1+α) [q+(1+α)p/2]
2
)

nF

(
µ↓− (1−α)

(1+α) [q−(1+α)p/2]
2
)
)

, p ̸= 0
, (A.61)

χ↑(q) =

∫ 1

−1

dx

2
nF

([
q − (1− α)p/2

]2 − µ↑

)

=


nF
(
q2 − µ↑

)
, p = 0

T
2(1−α)pq ln

(
nF

(
µ↑−[q+(1−α)p/2]

2
)

nF

(
µ↑−[q−(1−α)p/2]

2
)
)

, p ̸= 0
. (A.62)

Here, x = cos(θpq) and θpq is the angle between the vectors p and q. Note that these
functions leaves a non-zero contribution in the vacuum for µ↓, µ↑ > 0. For completeness,
we give the results in the limit T → 0, obtained by nF (x) → θ(−x),

χ↓(q) =

∫ 1

−1

dx

2
θ

(
µ↓ −

(1− α)

(1 + α)

[
q + (1 + α)p/2

]2)

=


θ
(
µ↓ − (1−α)

(1+α)q
2
)

, p = 0

θ(µ↓−Q2
−)

2(1−α)pq

[
µ↓ −Q2

− −
(
µ↓ −Q2

+

)
θ
(
µ↓ −Q2

+

)]
, p ̸= 0

, (A.63)

where Q2
± = (1−α)

(1+α)

[
q ± (1 + α)p/2

]2 and

χ↑(q) =

∫ 1

−1

dx

2
θ
(
µ↑ −

[
q − (1− α)p/2

]2)
=

θ
(
µ↑ − q2

)
, p = 0

θ(µ↑−q2−)
2(1−α)pq

[
µ↑ − q2− −

(
µ↑ − q2+

)
θ
(
µ↑ − q2+

)]
, p ̸= 0

, (A.64)

where q2± =
[
q ± (1− α)p/2

]2. These results coincide with [46], and [90] for α = 0.

The real and imaginary part can be obtained analytically by using the formula
1

x− i0+
= P

1

x
+ iπδ(x) , (A.65)

where P denotes the principal value. There are the following two cases:

– If y < 0: The integrals for the real part are well-defined and ImΠϕ = 0!

– If y ≥ 0: The imaginary part is given analytically

ImΠR,Tϕ (ω,p) = −h
2(1 + α)

4π2
π

∫ ∞

0
χ(q)q2δ(q2 − y) dq = −h

2(1 + α)

8π

√
y χ(

√
y) . (A.66)

The real-part at finite temperature can then be obtained via Kramers-Kronig relation with
a 1-dimensional numerical principal value integral.
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For the real part, one can use the following formulas [46].

– If y < 0, then the integral for the real part is well-defined and we get

ReΠR,Tϕ (ω,p) = −h
2(1 + α)

4π2

∫ ∞

0

χ(q) q2 dq

q2 + |y|
. (A.67)

– If y ≥ 0, then one needs the principle value integral and obtains [46]

ReΠR,Tϕ (ω,p) = −h
2(1 + α)

4π2
P

∫ ∞

0

χ(q) q2 dq

q2 − y
= −h

2(1 + α)

8π2
(C1 + C2) , (A.68)

where

C1 =

∫ ∞

y
dλ

√
y + λχ(

√
y + λ)

λ
, (A.69)

C2 =

∫ y

0
dλ

√
y + λχ(

√
y + λ)−

√
y − λχ(

√
y − λ)

λ
. (A.70)

This formula can be derived from the following representation of the Kramers-Kronig
relation, which is also useful for other numerical computations of the real part,

ReΠR(ω,p) =
∫ ∞

−∞

dλ

π

ImΠR(λ,p)

λ− ω

=

∫ ∞

0

dλ

π

ImΠR(ω + λ,p)− ImΠR(ω − λ,p)

λ
. (A.71)

This leads to the terms C1 + C2, if y − λ ≥ 0, and to only C1, if y − λ < 0.

At T = 0, the real part can be calculated analytically. For α = 0, our results coincide
with [90]. Note that the following expressions are valid for positive chemical potential only,
otherwise, they vanish.

First, we consider ReΠR,Tϕ,↓ (µ↓ > 0):

ReΠR,Tϕ,↓ (ω,0) =
h2(1 + α)

4π2


√

(1+α)µ↓
(1−α) −√

y arctanh
(√

(1+α)µ↓
(1−α)y

)
, y ≥ 0√

(1+α)µ↓
(1−α) −

√
|y| arctan

(√
(1+α)µ↓
(1−α)|y|

)
, y < 0

. (A.72)

ReΠR,Tϕ,↓ (ω,p) =
h2(1 + α)

8π2

√(1 + α)µ↓
(1− α)

−
y − (1+α)µ↓

(1−α) + (1+α)2p2

4

2p(1 + α)
log
(
y − Q̃2

+

y − Q̃2
−

)

−
√
|y|


arctanh

(
Q̃−√
y

)
+ arctanh

(
Q̃+√
y

)
, y ≥ 0

arctan
(

Q̃−√
|y|

)
+ arctan

(
Q̃+√
|y|

)
, y < 0

 , (A.73)

with Q̃± =
√

(1+α)µ↓
(1−α) ± (1+α)

2 p.
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Finally, for ReΠR,Tϕ,↑ (µ↑ > 0):

ReΠR,Tϕ,↑ (ω,0) =
h2(1 + α)

4π2


√
µ↑ −

√
y arctanh

(√
µ↑
y

)
, y ≥ 0

√
µ↑ −

√
|y| arctan

(√
µ↑
|y|

)
, y < 0

. (A.74)

ReΠR,Tϕ,↑ (ω,p) =
h2(1 + α)

8π2

√µ↑ − y − µ↑ +
(1−α)2p2

4

2p(1− α)
log
(
y − q̃2+
y − q̃2−

)

−
√

|y|

arctanh
(
q̃−√
y

)
+ arctanh

(
q̃+√
y

)
, y ≥ 0

arctan
(
q̃−√
y

)
+ arctan

(
q̃+√
y

)
, y < 0

 , (A.75)

with q̃± =
√
µ↑ ± (1−α)

2 p.

Fig. A.3 shows an example for the real and imaginary part of the retarded boson self-energy
ΠRϕ (ω,p) for the balanced case at unitarity and βµ = 0.13146.1

(a) ReΠRϕ (ω,p) (b) ImΠRϕ (ω,p)

Figure A.3.: Real and imaginary part of the retarded boson self-energy ΠRϕ (ω,p).

1Note the confusion with the signs for the boson self-energy as compared to the literature
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A.6. Fermion self-energy calculation

For the fermion self-energy, there are no analytical results for the non-selfconsistent case
in the single-channel model, since the bare boson propagator has no dispersion. Therefore,
the self-energy has to be computed numerically from the spectral functions. The general
expression for the retarded fermion self-energy ΣRψ (ω,p) is

ΣRψ (ω,p) = −h2
∫
q,λ1,λ2

ρϕ(λ1, q)ρψ(λ2,p− q)
nB(λ1) + nF (λ2)

−ω + λ1 − λ2 − i0+
, (A.76)

Taking the imaginary part recovers Eq. (4.9). Note that the imaginary part is strictly neg-
ative, since all quantities are positive definite, except of nB(λ1) and ρϕ(λ1). Fortunately,
the sign change of the boson distribution and spectral function occurs both at λ1 = 0,
and nB(λ1), ρϕ(λ1) < 0 for λ1 < 0. Moreover, the pole of nB(λ1) at λ1 = 0 is exactly
canceled by the zero crossing of the boson spectral function ρϕ(λ1), see Section 2.3. Thus,
the imaginary part of Eq. (A.76) is a regular expression that can be evaluated numerically.
The only difficulty is the highly peaked structure of the integrand, and will be discussed
in the numerical Appendix B.

As a side remark, we note that non-selfconsistent results for the fermion self-energy can be
derived for the two-channel model with dynamic bosons. Inserting the classical spectral
functions ρψ(λ,p) = δ(λ− p2 + µ) and ρϕ(λ,p) = δ(λ− p2/2− ν + 2µ), we obtain

ΣRψ (ω,p) = −h2
∫
q

nB(εq/2 + ν − 2µ) + nF (εp−q − µ)

−ω + εq/2− εp−q + ν − µ− i0+
. (A.77)

However, this will not be evaluated further in this work.

Fig. A.4 shows an example for the real and imaginary part of the retarded fermion self-
energy ΣRψ (ω,p) for the balanced case at unitarity and βµ = 0.13146.

(a) ReΣRψ (ω,p) (b) ImΣRψ (ω,p)

Figure A.4.: Real and imaginary part of the retarded fermion self-energy ΣRψ (ω,p).
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Numerical Implementation

The numerical implementation of the self-consistent equations was performed mainly in
Python 3.9 and partially in Mathematica. Some of the numerical methods are inspired
by the work of J. Winkel in our group, see [123] for more details. The main steps and
ideas of the present numerical framework are:

1. First iteration of the boson propagator:
Start with the analytic expression for ImΠRϕ and calculate ReΠRϕ on a finite grid.
To simplify the calculation, treat the divergent vacuum part analytically, see below.
Choose grid size large enough such that the numerical corrections are quite small.
This can be quantified in dependence of the temperature.

2. First iteration of the fermion propagator:
Take the bare fermion spectral function (delta peak) and the semi-analytic boson
spectral function from the first iteration and calculate ImΣRψ with (4.9) on a finite
grid. From this, obtain ReΣRψ as described below.

3. Further iterations of the fermion propagator:
Take the numerical spectral functions for the fermion and boson and calculate the
self-energy as in step 2.

4. Further iterations of the boson propagator:
Take numerical spectral functions for the fermions and calculate ImΠRϕ on a finite
grid. Outside the grid, glue smoothly to the analytical non-selfconsistent result.
Compute the difference δReΠRϕ to the non-selfconsistent result.

For the numerical calculation of 2-dimensional functions an adaptive python package,
called Adaptive [75], is used. The sampling points are chosen automatically based on
the functional form. Less samples are taken in smoother regions and more samples are
taken in faster changing regions. Additionally, the calculation of these sampling points
can be parallelized over multiple cores. An example of how sampling points are taken by
Adaptive is shown in Fig. B.1. The resulting sampling points are then linearly interpolated.
It is useful to simplify the interpolation by deforming the functions onto the quadratic
dispersion relation, see Fig. B.2. For the bosonic self-energy, this step can significantly
improve the resolution of sharp edges in the function. For the fermionic self-energy, it can
additionally help to ensure a large enough distance of the grid boundary to the main peak,
such that asymptotic behavior is visible.

The numerical integration of the self-energy loop integrals is performed mainly with an
adaptive Monte Carlo method from Vegas+ [65]. This allows for maximal flexibility when
dealing with highly peaked integrands in a multidimensional space and can be generalized
easily. However, this comes with the downside of a long runtime. For this specific use
case, a different adaptive integration routine using sparse grids might be more efficient.
The 1-dimensional principal value integral for the real part of the self-energy is computed
using the adaptive quadrature integration from SciPy [118].

49
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Figure B.1.: Example of a 2-dimensional function evaluated by Adaptive.

Boson spectral function

In this Section, we detail the calculation and representation of the boson spectral function
ρϕ. Since the renormalized bosonic self-energy (4.5) includes a counterterm, the numerical
procedure requires suitable subtraction schemes and analytic treatment.

The problematic part is the well-known vacuum solution, which is given by

Π0
ϕ(ωn,p) = h2

∫
q

[
1

−iωm + εq + εp−q − 2µ
− 1

2εq

]

=
h2

8π

√
− iωn

2
+

p2

4
− µ . (B.1)

This means that the vacuum part,

ImΠR,0ϕ (ω,p) =
h2

8π

√
ω

2
− p2

4
+ µ , (B.2)

can be subtracted from the total numerical self-energy ImΠRϕ (ω,p) in order to treat the
divergent real part analytically. Thus, we calculate the full numerical imaginary part of
the self-energy and obtain the real part via

ReΠRϕ (ω,p) = ReΠR,0ϕ (ω,p)

+
1

π

∫
λ

ImΠRϕ (λ,p)− ImΠR,0ϕ (λ,p)

λ− ω
, (B.3)

where ReΠR,0ϕ (ω,p) is the real part of the vacuum solution

ReΠR,0ϕ (ω,p) = −h
2

8π

√
−ω
2
+

p2

4
− µ . (B.4)

With these formulas, we can obtain ImΠRϕ and ReΠRϕ on a finite grid numerically.
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(a) (b)

Figure B.2.: Procedure to improve the interpolation of sharp edges and curvy functions.
(a) A 2-dimensional function is transformed onto the dispersion relation and
linearly interpolated f(ω,p). (b) Afterwards, the interpolated function is
shifted back to the dispersion relation f(ω − p2/2,p).

However, the calculation of the real part requires also information about the high frequency
tails outside the numerical grid. In this case, the imaginary part outside the grid is
approximated by the analytic formula of the non-selfconsistent self-energy discussed in
the previous Section,

ImΠRϕ (ω,p)− ImΠR,0ϕ (ω,p) ≈ ImΠR,Tϕ (ω,p) , (B.5)

for large ω. Thus, the bosonic spectral function outside the grid is approximated by the
non-selfconsistent spectral function ρ

(1)
ϕ (first iteration). A different subtraction scheme

would be to subtract the whole non-selfconsistent imaginary part straightaway and only
deal with differences to the first iteration. In principle, both methods are equivalent and
work similar. For practical reasons, we choose the latter subtraction scheme.

Another trick to improve the numerical calculation was already mentioned above. Since
the boson self-energy follows a quadratic dispersion relation, it is practical to transform the
functions onto the dispersion relation before interpolation, as shown in Fig. B.2. This way,
a better sampling and interpolation of the important regions can be achieved. Afterwards,
the interpolated function is shifted back to the correct dispersion relation.

Since the fermion spectral functions in the self-energy integrals are very peaked for lower
temperatures and larger momenta, it might be useful to subtract a broadened classical
spectral function, or the first iteration, from the further iterations in order to improve the
integration for larger momenta. The contribution from the subtracted spectral function
has then to be taken into account. Since the fermion spectral functions are represented
on a finite numerical grid, the bare delta peak contributions from outside the grid has to
be taken into account too. This is similar to the peak-tail splits from [44].

For the representation of the numerical self-energy on the finite grid, an adaptive grid
is chosen for the imaginary and real part, separately. The boundaries in frequency are
ω = (−100, 100) εF and in momentum p = (0, 10) kF . Approximately 10.000 grid points
are needed to obtain stable numerical results.
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Calculation of the real part via Kramers-Kronig

It turns out that the calculation of the real part via Kramers-Kronig relation is very
sensitive to the high frequency tails of the imaginary part. It is not sufficient to know
the imaginary part on a finite grid, but rather, we have to extrapolate the high frequency
behavior and estimate its contribution. For constant momentum p, the large-frequency
behavior of the self-energy Im Σ̃R(ω) outside the numerical grid is well described by the
power law

Im Σ̃R(ω) ≈ a

ωb
, (B.6)

where the constants a, b are determined by a fitting routine. From this fit one can calculate
the missing contribution δRe Σ̃R(ω) for the real part at frequency ω. We express the
imaginary part as Im Σ̃R(λ) = ImΣR(λ)θ(ωmax−λ)+aλ−bθ(λ−ωmax) with a contribution
inside and outside the numerical grid with frequency cutoff ωmax. From the Kramers-
Kronig relation, we obtain the contribution outside the grid

δRe Σ̃R(ω) =
∫ ∞

∆

Im Σ̃R(ω + λ) dλ

πλ
=

∫ ∞

∆

a dλ

πλ(ω + λ)b
, (B.7)

where ∆ = ωmax − ω. Evaluating the last integral gives the analytic expression

δRe Σ̃R(ω) = a

π∆bb
2F1

(
b, b; 1 + b;− ω

∆

)
, (B.8)

where 2F1 (a, b; c; z) is the hypergeometric function [1]. Using this large-frequency contri-
bution from outside the grid, improves the determination of the real part significantly.
For the fermion self-energy, we observe b ≈ 0.5 for large enough ωmax.

This asymptotic behavior can be shown by similar arguments as in Ref. [105]. We consider
only the large frequency behavior and rewrite the imaginary part of the fermion self-energy
in (4.9) as

ImΣRψ (ω) ∼
∫
q,λ1,λ2

ρϕ(λ1)ρψ(λ2)δ(ω − λ1 + λ2)
[
nB(λ1) + nF (λ2)

]
. (B.9)

In the limit ω → ∞, the delta function only contributes if (a) λ1 large and λ2 small or
(b) λ2 large negative and λ1 small. In case (b), however, the fermion spectral function ρψ
vanishes for small momenta and λ2 → −∞. Thus, only case (a) contributes and we are
left with

ImΣRψ (ω) ∼
∫
q,λ2

ρϕ(ω + λ2)ρψ(λ2)nF (λ2) , (B.10)

where we have used nB(λ1) → 0 for λ1 → ∞. As seen above, the large frequency behavior
of the boson spectral function is dominated by ρϕ(ω) ∼ 1/

√
ω. Additionally, the integrand

vanishes for large negative values of λ2, since ρψ(λ2) vanishes, and for large positive values
of λ2, since nF (λ2) vanishes. Thus, the range of λ2 is limited and we can write

ImΣRψ (ω) ∼
∫
q,λ2

ρψ(λ2)nF (λ2)/
√
ω ∼ 1/

√
ω , (B.11)

where we used that
∫
q,λ2

ρψ(λ2)nF (λ2) = n is finite in the last step.

With the same argument one can show that ImΣRψ (ω) vanishes rapidly for large negative
frequency.
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Iterative procedure

Using (4.9) and the Kramers-Kronig relation, the retarded self energies can be computed
in every iteration step and fed back into the next, after extraction of the spectral func-
tion via (2.20). The iterative procedure is initialized with the classical fermion spectral
function,

ρ
(0)
ψ (ω,p) = δ(ω − p2 + µ) . (B.12)

This initial guess is inserted into the spectral form of Πϕ to obtain the first iteration of the
boson spectral function ρ

(1)
ϕ . Then, ρ(1)ϕ together with ρ

(0)
ψ are inserted into the spectral

integral of Σψ to obtain the first iteration of the fermion spectral function ρ(1)ψ . Now, ρ(1)ψ
can be used to obtain the next iteration for the boson spectral function ρ

(2)
ϕ , and so on.

In general, ρ(i)ψ is used to obtain ρ(i+1)
ϕ , and ρ(i+1)

ϕ and ρ(i)ψ are used to obtain ρ(i+1)
ψ . This

iteration is repeated until convergence is reached. We observe that around 5-20 iterations
are needed to obtain a converged result with (Λ: numerical momentum cutoff)∫ Λ

q,λ

∣∣∣ρ(i)(λ, q)− ρ(i−1)(λ, q)
∣∣∣ ≲ 0.005Λ . (B.13)

This criterion is similar to the statement that, at this point, the density n(i) obtained
from the ith iteration does not change significantly anymore. In our case, the accuracy
is around 1%. As mentioned in the main text, the convergence is worse closer to the
critical temperature and the spectral functions may jump around. One can improve the
convergence by iterating twice over the fermions or updating the spectral functions only
partially. Other methods are discussed in the main text.
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