

Heavy impurities in Fermi gases: A basis-change approach

Eugen Dizer¹ Xin Chen¹ Emilio Ramos Rodriguez¹
Richard Schmidt¹

¹Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg,
Germany

Abstract

- Unified framework that connects **Anderson's orthogonality catastrophe** [1] with the **quasiparticle picture** of mobile Fermi polarons.
- Recoil-induced **mass gap** generates an **in-gap state** $\langle g \rangle$ which is the microscopic origin of the **polaron-to-molecule transition**.
- Mean-field treatment and **basis change** yield accurate description of ground state and quasiparticle properties.

Fermi polaron problem

The Hamiltonian for a single impurity of mass M interacting with fermions of mass m in the Lee-Low-Pines (LLP) frame [2] with total momentum $\mathbf{P} = 0$ is

$$\hat{H} = \sum_{\mathbf{k}} \left(\frac{\mathbf{k}^2}{2m} + \frac{\mathbf{k}^2}{2M} \right) \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}} + \sum_{\mathbf{k}, \mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}'} + \frac{1}{2M} \sum_{\mathbf{k}, \mathbf{k}'} (\mathbf{k} \cdot \mathbf{k}') \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}'}^{\dagger} \hat{c}_{\mathbf{k}'} \hat{c}_{\mathbf{k}}.$$

Mass-gap description

Effective **quadratic** Hamiltonian \hat{H}_{quad} for heavy impurities,

$$\hat{H}_{\text{quad}} = \sum_{\mathbf{k}} E_{\mathbf{k}} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}} + \sum_{\mathbf{k}, \mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}'},$$

with **gapped dispersion relation** $E_{\mathbf{k}}$ of the fermions,

$$E_{\mathbf{k}} = \begin{cases} \frac{\mathbf{k}^2}{2m} - \frac{\mathbf{k}^2}{2M} & \text{for } |\mathbf{k}| < k_F, \\ \frac{\mathbf{k}^2}{2m} + \frac{\mathbf{k}^2}{2M} & \text{for } |\mathbf{k}| > k_F. \end{cases}$$

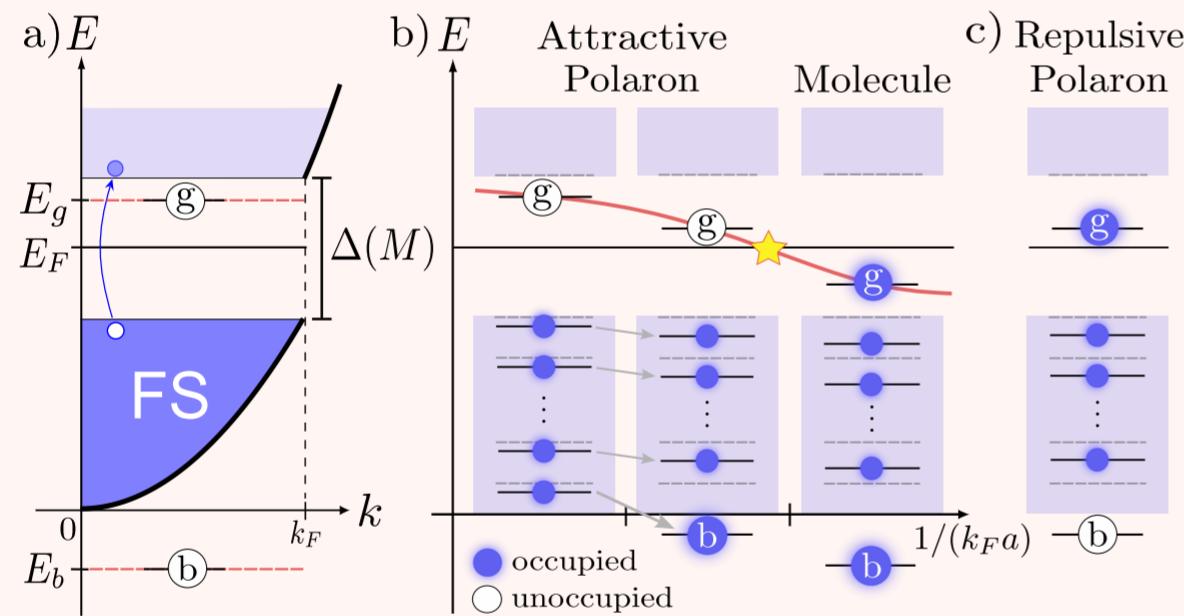


Figure 1. Gapped dispersion relation and physical interpretation of the in-gap state $\langle g \rangle$.

Mean-field treatment (MFT)

Exact diagonalization of the gapped Hamiltonian \hat{H}_{quad} yields

$$\hat{H}_{\text{quad}} = \sum_{\alpha} \omega_{\alpha} \hat{\gamma}_{\alpha}^{\dagger} \hat{\gamma}_{\alpha},$$

with **single-particle spectrum** ω_{α} and corresponding eigenvectors $\hat{\gamma}_{\alpha}^{(\dagger)}$.

Functional determinant approach (FDA) to obtain the **many-body spectrum** $A(E)$,

$$S(t) = \langle e^{i\hat{H}_0 t} e^{-i\hat{H}_{\text{quad}} t} \rangle = \det[\hat{1} - \hat{n} + \hat{n} e^{i\hat{h}_0 t} e^{-i\hat{h}_{\text{quad}} t}],$$

where the Ramsey signal $S(t)$ is the Fourier transform of the many-body spectrum,

$$A(E) = 2\text{Re} \int_0^{\infty} dt e^{iEt} S(t).$$

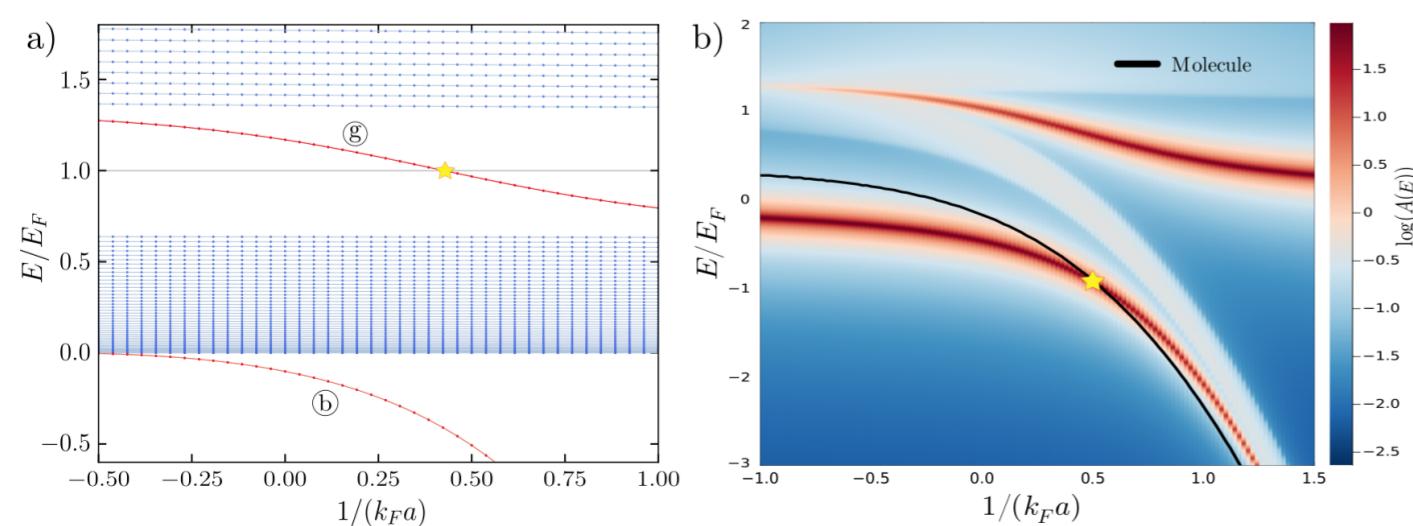


Figure 2. a) Single-particle spectrum ω_{α} and b) many-body spectrum $A(E)$ as function of $1/(k_F a)$.

Variational ansatz in the interacting basis (VAIB)

The **variational ansatz** in the basis-changed LLP frame has the general form

$$|\Psi\rangle = \phi_0 |\widetilde{FS}\rangle + \sum_{\alpha>\beta} \phi_{\alpha\beta} \hat{\gamma}_{\alpha}^{\dagger} \hat{\gamma}_{\beta} |\widetilde{FS}\rangle,$$

where $\beta < (\alpha)$ denotes the occupied (unoccupied) states, and $|\widetilde{FS}\rangle = \prod_{\beta<\alpha} \hat{\gamma}_{\beta}^{\dagger} |0\rangle$ is the interacting Fermi sea. We can define three different variational ansätze for the **attractive polaron (AP)**, the **repulsive polaron (RP)** and the dressed **molecule (M)**.

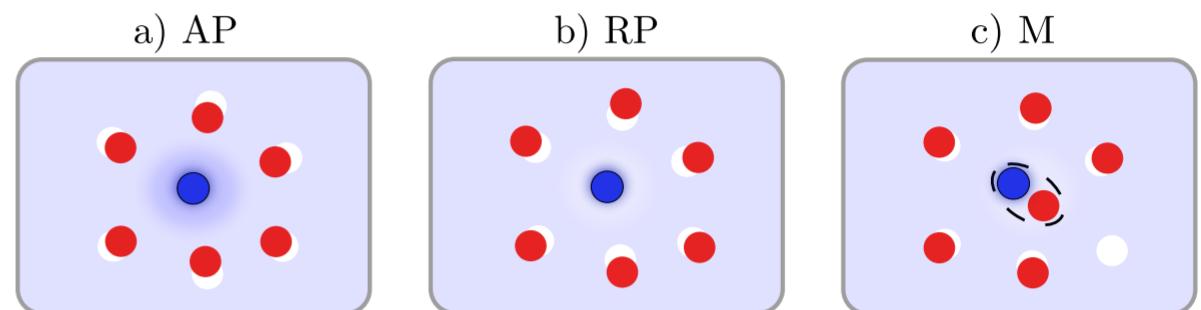


Figure 3. Illustration of the three excitations in the Fermi polaron problem: AP, RP and M.

Basis change

The new creation operators $\hat{\gamma}_{\alpha}^{\dagger}$ are related to the non-interacting fermions $\hat{c}_{\mathbf{k}}$ via

$$\hat{\gamma}_{\alpha}^{\dagger} = \sum_{\mathbf{k}} \langle \mathbf{k} | \tilde{a} \rangle \hat{c}_{\mathbf{k}}^{\dagger}.$$

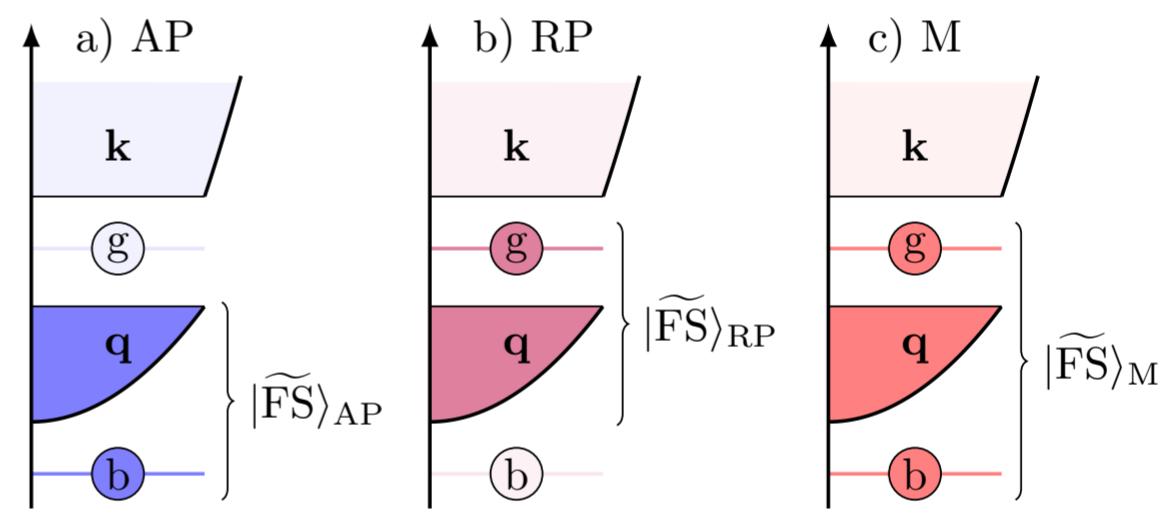


Figure 4. Definition of the modified Fermi sea $|\widetilde{FS}\rangle$ for the AP, RP and M.

Quasiparticle weight $Z = |\langle FS|\widetilde{FS}\rangle|^2$ and ground state energy $E = \langle \Psi | \hat{H} | \Psi \rangle$:

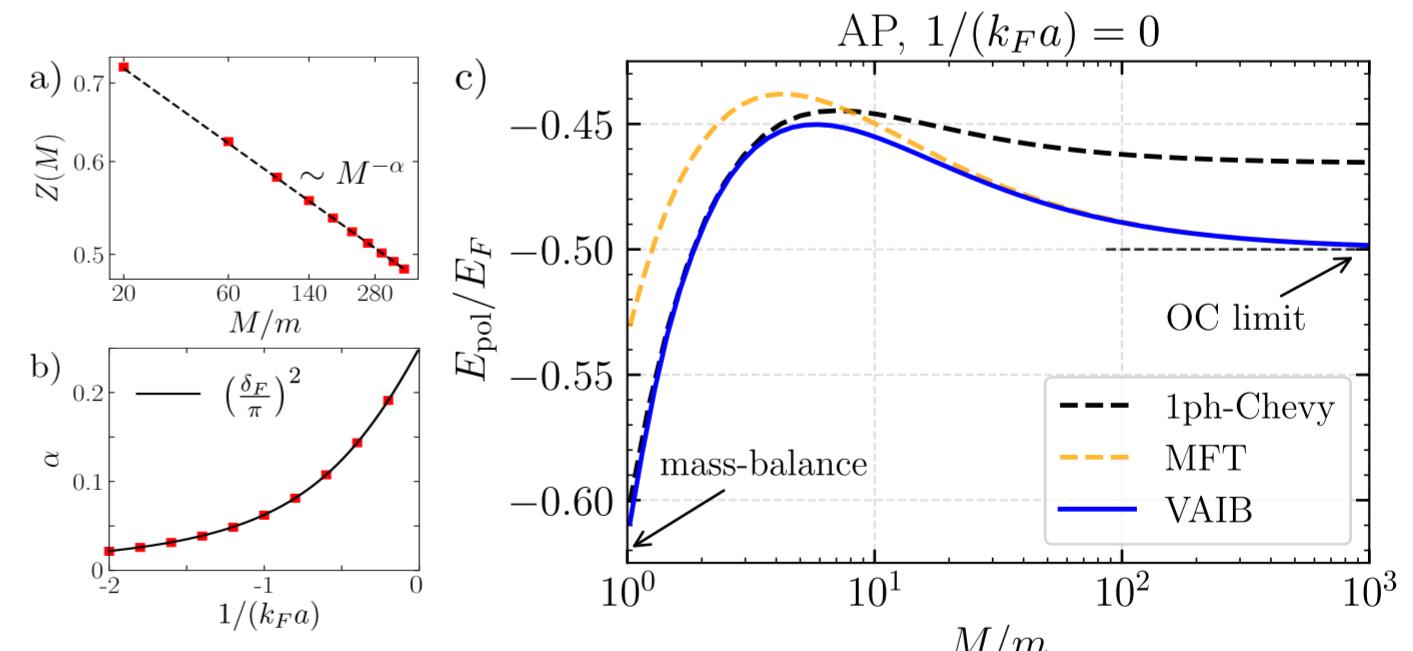


Figure 5. Quasiparticle weight and ground state energy at $1/(k_F a) = 0$ as function of mass-ratio M/m .

Method	MFT	HF	1ph-Chevy	2ph-Chevy	VAIB	DiagMC
E_{pol}/E_F	-0.534	-0.606	-0.6066	-0.6156	-0.616	-0.618

Table 1. Ground state energy for $M/m = 1$ and $1/(k_F a) = 0$ using different methods.

References

- [1] P. W. Anderson. Infrared Catastrophe in Fermi Gases with Local Scattering Potentials. *Phys. Rev. Lett.*, 18:1049–1051, Jun 1967.
- [2] Ben Kain and Hong Y. Ling. Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation. *Phys. Rev. A*, 96:033627, Sep 2017.