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Abstract

Unified framework that connects Anderson’s orthogonality catastrophe [1] with

the quasiparticle picture of mobile Fermi polarons.

Recoil-induced mass gap generates an in-gap state g which is the microscopic

origin of the polaron-to-molecule transition.

Mean-field treatment and basis change yield accurate description of ground state

and quasiparticle properties.

Fermi polaron problem

The Hamiltonian for a single impurity of mass M interacting with fermions of mass m
in the Lee-Low-Pines (LLP) frame [2] with total momentum P = 0 is
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Mass-gap description

Effective quadratic Hamiltonian Ĥquad for heavy impurities,
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with gapped dispersion relation Ek of the fermions,
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Figure 1. Gapped dispersion relation and physical interpretation of the in-gap state g .

Mean-field treatment (MFT)

Exact diagonalization of the gapped Hamiltonian Ĥquad yields

Ĥquad =
∑

α

ωαγ̂†
αγ̂α ,

with single-particle spectrum ωα and corresponding eigenvectors γ̂
(†)
α .

Functional determinant approach (FDA) to obtain the many-body spectrum A(E),

S(t) = 〈eiĤ0te−iĤquadt〉 = det[1̂ − n̂ + n̂eiĥ0te−iĥquadt] ,

where the Ramsey signal S(t) is the Fourier transform of the many-body spectrum,

A(E) = 2Re
∫ ∞

0
dt eiEtS(t) .

Figure 2. a) Single-particle spectrum ωα and b) many-body spectrum A(E) as function of 1/(kF a).

Variational ansatz in the interacting basis (VAIB)

The variational ansatz in the basis-changed LLP frame has the general form

|Ψ〉 = φ0|F̃S〉 +
∑

α>,β<

φαβ γ̂†
αγ̂β|F̃S〉 ,

where β < (α >) denotes the occupied (unoccupied) states, and |F̃S〉 =
∏

β< γ̂†
β|0〉

is the interacting Fermi sea. We can define three different variational ansätze for the

attractive polaron (AP), the repulsive polaron (RP) and the dressed molecule (M).

Figure 3. Illustration of the three excitations in the Fermi polaron problem: AP, RP and M.

Basis change

The new creation operators γ̂†
α are related to the non-interacting fermions ĉ†

k via

γ̂†
α =

∑
k

〈k|α̃〉ĉ†
k .
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Figure 4. Definition of the modified Fermi sea |F̃S〉 for the AP, RP and M.

Quasiparticle weight Z = |〈FS|F̃S〉|2 and ground state energy E = 〈Ψ|Ĥ|Ψ〉:

Figure 5. Quasiparticle weight and ground state energy at 1/(kF a) = 0 as function of mass-ratio M/m.

Method MFT HF 1ph-Chevy 2ph-Chevy VAIB DiagMC

Epol/EF -0.534 -0.606 -0.6066 -0.6156 -0.616 -0.618

Table 1. Ground state energy forM/m = 1 and 1/(kF a) = 0 using different methods.
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