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Abstract Many-body physics |
m Impurity physics with dipolar interactions in 3D For an infinitely heavy impurity, even and odd angular momenta decouple,
m First step towards a dipolar BCS-BEC crossover and the total many-body spectrum A(w) is given by

m Simultaneous signatures of s- and p-wave pairing

Alw) = %Re /OOO dte™'S(t), S(t) = <eiﬁot6_im> .
Model |

Consider a single dipolar impurity czk inside a non-interacting Fermi sea éL

H=Y Eudlde +Y exéfic+ S V(q) el di  dcx, . R o« - . R ——
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where By = k?/(2M), ex = k*/(2m) and V(q) is the Fourier transform N \ N

of a regularized dipole-dipole potential with short-range cutoff R,
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Figure 1. Dipolar polaron in 3D and regularized interaction potential V' (r). Dipolar polaron energy
The ground state energy is given by generalized Fumi's theorem |[2],
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Scattering physics AR — _;/O dE'S 6i(E) .
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Two-body Schrodinger equation

short-range interactions

Using the dipole strength d and reduced mass = mM /(m + M), one
can define natural length and energy scales (dipole units),

ag = pd*, Eg=1/(ua;).
The dimensionless Schrodinger equation,
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is solved by expanding the wave function into partial waves,
b(r. 0. ) = EZEm(T)}/Zm(Qy 5). Orthogonality catastrophe
T Im
Scattering lengths Quasiparticle weight Z decays as function of fermion number N [2],
2
One can define a scattering length a; for every partial-wave channel _ 0]
g length a y P , Z =|{(FS[W)P ~ N, a=Y [ .
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l k—0 OZ( )/
| | | | 0.25
20 , , , , , , , , , , —1.20 F - —=— kpag=0
15 E no bound state even-parity even-parity i MO | 0.20 kraq = 0.5 ]
bound state bourf state —®— kpag=1.0
o e 1 ! : 015~ krag= 15 -
o l 0.4} 2 -
~ 3 ’ 010 B
5l j : ~0.67 b | 0.05
—— Power-law
—10F B — - | | | | l
sl ] " 7.8 7.9 8.0 8.1 Y000 —i5 —10 =05 00
) 1ok log N 1/(kpa)
20T ) 3 s 5 —0.04 0.02 0.00 0.02 0.04
aa/ Bo aa/ao Figure 6. Power-law exponent « of the quasiparticle weight decay Z ~ N™¢.
Figure 2. s-wave scattering length a( and dipole scattering length as.
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