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Quantum Electrodynamics (QED)

Figure: Scheme of the QED contributions to the electronic structure of
highly charged ions.1

LQED = ψ̄
[
γµ (i~c∂µ − eAµ)−mec

2]ψ − 1
16π

FµνF
µν . (1)

1
https://www.mpi-hd.mpg.de/mpi/fileadmin/bilder/Progress_Reports/2017-19/
2QuantumDynamics.pdf
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Vacuum Polarization:

Self-Energy Correction:
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Vacuum Polarization:

= + + ...

Modification of the Photon Propagator:

iD′
µν(k) = +

= iDµν(k) + iDµλ(k)
iΠλσ(k)

4π
iDσν(k)

Inspired by [9]
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One-Loop g Factor Corrections

Figure: Feynman diagrams representing the first-order radiative
corrections to the g factor of the bound electron.
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g Factor

The g Factor is given by [18]:

g = − κ

2j(j + 1)

(
1− 2κ

∂Enκ

∂me

)
, (2)

if the potential V (r) does not depend on the electron mass me .

Small Perturbation of the potential δV (r) leads to

∆g = − κ2

j(j + 1)me

〈
r
∂δV (r)

∂r

〉
. (3)
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Leptonic Vacuum Polarization

Leptonic Uehling Potential [9]:

δV (r) =
α

π

∫ 1

0
dv

v2
(
1− v2/3

)

1− v2

(
−Zα

r
e−2ml r/

√
1−v2

)
, (4)

where ml is the mass of the virtual particle in the fermionic loop.

Energy Shift of the 1s State:

∆E lept. VP
1s = 〈δV (r)〉1s =

∫ ∞

0
dr (G 2

1s(r) + F 2
1s(r)) δV (r). (5)

g Factor Shift of the 1s State:

∆g lept. VP1s = − 4
3me

〈
r
∂δV (r)

∂r

〉

1s
. (6)
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24 Chapter 4 Leptonic Vacuum Polarization

4.1. Energy Shift

We now perform the calculations for the energy shift of the 1s state in hydrogen-like
atoms due to the leptonic Uehling potential. When |ψ1s⟩ denotes the bound electron
wave function of the ground state in a point-like Coulomb potential, the energy shift in
first-order perturbation theory is given by:

∆EVP
1s = ⟨ψ1s|δV (r)|ψ1s⟩ =

∫ ∞

0
dr (G2(r) + F 2(r)) δV (r)

=
2λ

Γ(2γ + 1)

∫ ∞

0
dr (2λr)2γe−2λr

(
−Zα

2

πr

∫ 1

0
dv

v2
(
1 − v2/3

)

1 − v2
e−2mlr/

√
1−v2

)

= − 2λZα2

Γ(2γ + 1)π

∫ 1

0
dv

v2
(
1 − v2/3

)

1 − v2

∫ ∞

0
dr

(2λr)2γ

r
e
−2r

(
λ+

ml√
1−v2

)

. (4.4)

Now, substitute u = r2γ , du = 2γr2γ−1dr,

and then t =

[
2
(
λ+ ml√

1−v2

)]2γ

u , dt =

[
2
(
λ+ ml√

1−v2

)]2γ

du :

∆EV P
1s = − 2λZα2

Γ(2γ + 1)π

∫ 1

0
dv

v2
(
1 − v2/3

)

1 − v2

∫ ∞

0

du

2γ
(2λ)2γe

−2u1/2γ

(
λ+

ml√
1−v2

)

= − 2λZα2

Γ(2γ + 1)π

∫ 1

0
dv

v2
(
1 − v2/3

)

1 − v2

(2λ)2γ

2γ

[
2
(
λ+ ml√

1−v2

)]2γ

∫ ∞

0
dt e−t1/2γ

︸ ︷︷ ︸
=2γΓ(2γ)

= −Zα
2λ2γ+1

γπ

∫ 1

0
dv

v2
(
1 − v2/3

) (
1 − v2

)γ−1

[
λ
√

1 − v2 +ml

]2γ

= −Zα
2(sZα)2γλ

γπ

∫ 1

0
dv

v2
(
1 − v2/3

) (
1 − v2

)γ−1

[
1 + sZα

√
1 − v2

]2γ , (4.5)

where we used the relation Γ(x+ 1) = xΓ(x) and that λ/ml = sZα, where s = me/ml is
the ratio of the electron and the loop particle masses.

This integral can now be solved analytically with the base integral given in [28]:

Iabc =

∫ 1

0
dy

(
1 − y2

)a−1/2

yb−1

(
sZαy

1 + sZαy

)c−2ϵ

=
1

2
(sZα)c−2ϵB

(
a+

1

2
, 1 − b− c

2
− ϵ

)

× 3F2

(
c

2
− ϵ,

c+ 1

2
− ϵ, 1 − b− c

2
− ϵ;

1

2
, a+

3 − b+ c

2
− ϵ; (sZα)2

)

− c− 2ϵ

2
(sZα)c+1−2ϵB

(
a+

1

2
,
3 − b+ c

2
− ϵ

)

× 3F2

(
c

2
+ 1 − ϵ,

c+ 1

2
− ϵ,

3 − b+ c

2
− ϵ;

3

2
, a+ 2 − b− c

2
− ϵ; (sZα)2

)
. (4.6)
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Here, ϵ = 1 − γ, and B(x, y) is the beta function defined in Appendix A.4. Performing
the substitution y =

√
1 − v2, dy = −vdv√

1−v2
, one obtains finally:

∆EVP
1s = −Zα

2(sZα)2γλ

γπ



∫ 1

0

ydy√
1 − y2

(
1 − y2

)
y2γ−2

[1 + sZαy]2γ − 1

3

∫ 1

0

ydy√
1 − y2

(
1 − y2

)2
y2γ−2

[1 + sZαy]2γ




= −Zα
2λ

γπ



∫ 1

0
dy

(
1 − y2

) 1
2

y

(
sZαy

1 + sZαy

)2γ

−
∫ 1

0
dy

(
1 − y2

) 3
2

y

(
sZαy

1 + sZαy

)2γ



= −Zα
2λ

γπ

[
I122 − 1

3
I222

]
. (4.7)

This result was already derived in [27] and reference therein. The difference is that in
[27], the result was derived for the electron as loop-particle and electrons or muons as
bound particles. Here, we considered the electron as bound particle and arbitrary leptons
as loop-particles.

To investigate this all-order in Zα result, we may expand (4.7) in a series for small Zα to
get a simple and handy formula for the correction due to the leptonic Uehling potential.
Using the computer algebra software Mathematica [18], we find for the leading order Taylor
expansion:

∆EVP
1s =

αme

π

[
−4s2(Zα)4

15
+

5πs3(Zα)5

48

+

(
4s2

15
ln(2sZα) − 107s2

225
− 12s4

35

)
(Zα)6

+

(
−5πs3

48
ln
(
sZα

2

)
− 17πs3

576
+

7πs5

64

)
(Zα)7 + O

(
(Zα)8

)

 . (4.8)

Therefore, the energy shift correction for leptonic vacuum polarization is of the leading
order (Zα)4. The first term of expression (4.8) coincides with the result of the simplest
approximation, namely, using nonrelativistic wave functions and the low-momentum ap-
proximation of the polarization function [13, 16, 24]. Since this leads to a Dirac delta
function, we will call it the δ-potential approximation.

With formula (4.7), one can calculate the energy shift contribution for any leptonic vacuum
loop.2 As equation (4.7) or (4.8) show, the heavier the loop particle is, the smaller is the
measureable effect. After the e−e+-loop, the next important contribution is due to the
µ−µ+-loop, also called muonic vacuum polarization, where a muon and anti-muon pair is
produced in the loop. The effect of muonic vacuum polarization is around s2 ≈ 1/2072 ≈
2 · 10−5 times smaller than that of the electronic vacuum polarization.

Figure 4.1 shows the absolute value of the muonic vacuum polarization contribution to
the energy shift for different charge numbers Z, calculated with the exact formula (4.7)
and its approximation (4.8) up to 5th order. It should be mentioned that the Uehling
potential is attractive and results in a stronger binding. Thus, the corresponding energy
shift is negative. The correction for ions with charge numbers Z ≤ 8 is so small that its
value is not visible in this diagram.

2As mentioned in [28], this formula can be applied to regular, electronic atoms or ions considered in this
work, or to muonic atoms by replacing the electron mass me with the muon mass mµ.

Eugen Dizer Bachelor Thesis 13
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Energy Shift for a point-like Nucleus:

∆E lept. VP
1s = −Zα2λ

γπ

[
I122 −

1
3
I222

]
. (7)

g Factor Shift for a point-like Nucleus:

∆g lept. VP1s = −8α(Zα)

3πs

[
I133 −

1
3
I233 +

Zαs

2γ

(
I122 −

1
3
I222

)]
.

(8)
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Hadronic Vacuum Polarization

Real Part of the Hadronic Polarization Function [4]:

Re
[
Πhad(q2)

]
= Ai + Bi ln(1 + Ciq

2), (9)

The parameters are given by

i Region Range [GeV] Ai Bi Ci [GeV−2]
1 0 - k1 0.0 - 0.7 0.0 0.0023092 3.9925370
2 k1 - k2 0.7 - 2.0 0.0 0.0022333 4.2191779
3 k2 - k3 2.0 - 4.0 0.0 0.0024402 3.2496684
4 k3 - k4 4.0 - 10.0 0.0 0.0027340 2.0995092
5 k4 - k5 10.0 - mZ 0.0010485 0.0029431 1.0
6 k5 - k6 mZ - 104 0.0012234 0.0029237 1.0
7 k5 - k6 104 - 105 0.0016894 0.0028984 1.0
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Hadronic Uehling Potential

Numerical Hadronic Uehling Potential for a point-like Nucleus:

δV had. VP
numerical(r) = −2Zα

π

7∑

k=1

∫ ki

ki−1

dq
sin(qr)

qr

[
Ai + Bi ln(1 + Ciq

2)
]
.

(10)

Analytical Hadronic Uehling Potential for a point-like Nucleus:

δV had. VP
analytical(r) = −2Zα

π

∫ ∞

0
dq

sin(qr)

qr

[
A1 + B1 ln(1 + C1q

2)
]

= −2Zα
r

B1 E1

(
r√
C1

)
. (11)
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Figure: Comparison of leptonic and hadronic Uehling potential.
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Leptonic
Hadronic

Hadronic Energy Shift

Energy Shift of the 1s State for a point-like Nucleus:

∆Ehad. VP
1s = −Zαλ(2λ

√
C1)2γB1

γ2
2F1

(
2γ, 2γ; 1 + 2γ;−2λ

√
C1

)
.

(12)

Zα Expansion:

∆Ehad. VP
1s ≈ − 4B1C1m

3
e(Zα)4 +

32B1C
3/2
1 m4

e(Zα)5

3
− 4B1C1m

3
e(Zα)6

[
1 + 6C1m

2
e − ln(2Zα

√
C1me)

]
.

(13)
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Leptonic
Hadronic

Hadronic Energy Shift

Z ∆Epoint
analytical [eV] ∆Epoint

numerical [eV] ∆Efinite size
exact [eV]

1 −1.3963 · 10−11 −1.39(33) · 10−11 −1.391(4) · 10−11

14 −5.9178 · 10−7 −5.90(18) · 10−7 −5.756(1) · 10−7

20 −2.7133 · 10−6 −2.71(5) · 10−6 −2.5596(3) · 10−6

70 −3.1090 · 10−3 −3.109(4) · 10−3 −1.248(1) · 10−3

82 −1.4128 · 10−2 −1.413(1) · 10−2 −3.693(4) · 10−3

Table: Energy shifts for hadronic VP.
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Hadronic

Hadronic g Factor Shift

g Factor Shift of the 1s State for a point-like Nucleus:

∆ghad. VP1s = −8B1(Zα)2(2λ
√
C1)2γ

3γ(1 + 2λ
√
C1)2γ

+
4

3me
∆Eapprox. (14)

Zα Expansion:

∆ghad. VP1s ≈ − 16B1C1m
2
e(Zα)4 +

512B1C
3/2
1 m3

e(Zα)5

9

− 16B1C1m
2
e(Zα)6

3

[
2 + 30C1m

2
e − 3 ln(2meZα

√
C1)
]
.

(15)
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Leptonic
Hadronic

Hadronic g Factor Shift

Z ∆gpointanalytical ∆gpointnumerical ∆gfinite size
approx

1 −1.0929 · 10−16 −1.09(9) · 10−16 −1.09(2) · 10−16

14 −4.6157 · 10−12 −4.61(5) · 10−12 −4.49(1) · 10−12

20 −2.1085 · 10−11 −2.11(2) · 10−11 −1.99(1) · 10−11

70 −2.2051 · 10−8 −2.205(1) · 10−8 −8.86(1) · 10−9

82 −9.5886 · 10−8 −9.589(3) · 10−8 −2.51(1) · 10−8

Table: g factor shifts for hadronic VP.
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Self-Energy Correction

∆ESE = −ie2
∫

d4k

(2π)4
1
k2

〈
ψ

∣∣∣∣γµ
1

/p − /k −me − γ0V
γµ

∣∣∣∣ψ
〉
.

(16)

Divergent Expression
Exact Coulomb-Dirac Propagator only known in Coordinate
Space
Evaluation of the above Expression difficult

=⇒ Approximation!
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Dimensional Regularization

Idea: Integrals in QFT are only divergent in 3 or 4 dimensions!

=⇒ Analytical Continuation to d = 3− 2ε and D = 4− 2ε.
=⇒ Taylor Expansion for small ε.

This Regularization Technique yields the well-known Result [9]

∆ESE
1s =

4α
3π

(Zα)4me

[
5
6
− 2 ln(Zα)− ln k0

]
, (17)

where the Bethe logarithm ln k0 is defined as

(Zα)4me

n3
ln k0 =

1
2m2

e

〈
p (H − E ) ln

[
2(H − E )

me(Zα)2

]
p
〉
. (18)
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Bethe Logarithm

Integral representation of the Bethe logarithm [13]:

ln k0(n) = − 3
4
PV

∫ 1

0
dt

1
t3

(
t2 − 1
nt2

Pnd(t) +
2
3n
− 8t2

3

)

− 2 ln(n), (19)

PV denotes the principal value and Pnd(t) is the non-relativistic
dipol matrix element:

Pnd =
1

3me

〈
φnlm

∣∣∣∣p
1

H − (E − ω)
p
∣∣∣∣φnlm

〉
. (20)
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Outlook

Hadronic Energy Shift (Paper with J. S. Breidenbach)
Hadronic g Factor Shift for Extended Nucleus (Paper)
Nucleus Models
Bethe logarithm for 2s state
Bethe logarithm for general ns state

=⇒ Plenty of Room for Analytical Work!
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Thank you and stay healthy!
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